We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in...We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is an aggressive malignant neoplasm that requires liver transplantation(LT).Despite patients with HCC being prioritized by most organ allocation systems worldwide,they still hav...BACKGROUND Hepatocellular carcinoma(HCC)is an aggressive malignant neoplasm that requires liver transplantation(LT).Despite patients with HCC being prioritized by most organ allocation systems worldwide,they still have to wait for long periods.Locoregional therapies(LRTs)are employed as bridging therapies in patients with HCC awaiting LT.Although largely used in the past,transarterial embolization(TAE)has been replaced by transarterial chemoembolization(TACE).However,the superiority of TACE over TAE has not been consistently shown in the literature.AIM To compare the outcomes of TACE and TAE in patients with HCC awaiting LT.METHODS All consecutive patients with HCC awaiting LT between 2011 and 2020 at a single center were included.All patients underwent LRT with either TACE or TAE.Some patients also underwent percutaneous ethanol injection(PEI),concom-itantly or in different treatment sessions.The choice of LRT for each HCC nodule was determined by a multidisciplinary consensus.The primary outcome was waitlist dropout due to tumor progression,and the secondary outcome was the occurrence of adverse events.In the subset of patients who underwent LT,complete pathological response and post-transplant recurrence-free survival were also assessed.RESULTS Twelve(18.5%)patients in the TACE group(only TACE and TACE+PEI;n=65)and 3(7.9%)patients in the TAE group(only TAE and TAE+PEI;n=38)dropped out of the waitlist due to tumor progression(P log-rank test=0.29).Adverse events occurred in 8(12.3%)and 2(5.3%)patients in the TACE and TAE groups,respectively(P=0.316).Forty-eight(73.8%)of the 65 patients in the TACE group and 29(76.3%)of the 38 patients in the TAE group underwent LT(P=0.818).Among these patients,complete pathological response was detected in 7(14.6%)and 9(31%)patients in the TACE and TAE groups,respectively(P=0.145).Post-LT,HCC recurred in 9(18.8%)and 4(13.8%)patients in the TACE and TAE groups,respectively(P=0.756).Posttransplant recurrence-free survival was similar between the groups(P log-rank test=0.71).CONCLUSION Dropout rates and posttransplant recurrence-free survival of TAE were similar to those of TACE in patients with HCC.Our study reinforces the hypothesis that TACE is not superior to TAE as a bridging therapy to LT in patients with HCC.展开更多
Objective:To analyze the clinical effect of a simple egg membrane patch bridging method in repairing tympanic membrane perforation.Methods:A total of 93 tympanic membrane perforation patients admitted to the hospital ...Objective:To analyze the clinical effect of a simple egg membrane patch bridging method in repairing tympanic membrane perforation.Methods:A total of 93 tympanic membrane perforation patients admitted to the hospital between September 2022 and October 2023 were selected and divided into two groups according to the random number table method.The control group implemented the conventional treatment(n=46 cases),and the patch group adopted the simple egg membrane patch bridging method(n=47 cases).The healing rate of the tympanic membrane,the air-bone gap,the air conduction hearing threshold,the dry ear rate,and the incidence of complications in both groups were compared before and after treatment.Results:The healing rate of the tympanic membrane in the patch group was significantly higher than that of the control group(95.75%vs.76.09%),with P<0.05;there was no difference in the air-bone gap and air conduction hearing threshold levels between the two groups before treatment(P>0.05),and the hearing indexes of the patch group were significantly lower than those of the control group 3 months after treatment(P<0.05);the dry ear rate in the patch group was significantly higher than that of the control group after treatment(85.11%vs.67.39%),and the total incidence of complications was also significantly lower than that of the control group(6.38%vs.21.74%),with P<0.05.Conclusion:The simple egg membrane patch bridging method is effective in repairing tympanic membrane perforation,which can effectively improve patients’hearing levels and reduce the occurrence of post-treatment complications.Thus,it is worth popularizing and applying in the clinic.展开更多
We previously prepared nerve growth factor poly-lactide co-glycolid sustained-release microspheres to treat rat sciatic nerve injury using the small gap sleeve technique.Multiple growth factors play a synergistic role...We previously prepared nerve growth factor poly-lactide co-glycolid sustained-release microspheres to treat rat sciatic nerve injury using the small gap sleeve technique.Multiple growth factors play a synergistic role in promoting the repair of peripheral nerve injury;as a result,in this study,we added basic fibroblast growth factors to the microspheres to further promote nerve regeneration.First,in an in vitro biomimetic microenvironment,we developed and used a drug screening biomimetic microfluidic chip to screen the optimal combination of nerve growth factor/basic fibroblast growth factor to promote the regeneration of Schwann cells.We found that 22.56 ng/mL nerve growth factor combined with 4.29 ng/mL basic fibroblast growth factor exhibited optimal effects on the proliferation of primary rat Schwann cells.The successfully prepared nerve growth factor-basic fibroblast growth factor-poly-lactide-co-glycolid sustained-release microspheres were used to treat rat sciatic nerve transection injury using the small gap sleeve bridge technique.Compared with epithelium sutures and small gap sleeve bridging alone,the small gap sleeve bridging technique combined with drug-free sustained-release microspheres has a stronger effect on rat sciatic nerve transfection injury repair at the structural and functional level.展开更多
Electrochemical water splitting represents one of the most promising technologies to produce green hydrogen,which can help to realize the goal of achieving carbon neutrality.While substantial efforts on a laboratory s...Electrochemical water splitting represents one of the most promising technologies to produce green hydrogen,which can help to realize the goal of achieving carbon neutrality.While substantial efforts on a laboratory scale have been made for understanding fundamental catalysis and developing high-performance electrocatalysts for the two half-reactions involved in water electrocatalysis,much less attention has been paid to doing relevant research on a larger scale.For example,few such researches have been done on an industrial scale.Herein,we review the very recent endeavors to bridge the gaps between fundamental research and industrial applications for water electrolysis.We begin by introducing the fundamentals of electrochemical water splitting and then present comparisons of testing protocol,figure of merit,catalyst of interest,and manufacturing cost for laboratory and industry-based water-electrolysis research.Special attention is paid to tracking the surface reconstruction process and identifying real catalytic species under different testing conditions,which highlight the significant distinctions of corresponding electrochemical reconstruction mechanisms.Advances in catalyst designs for industry-relevant water electrolysis are also summarized,which reveal the progress of moving the practical applications forward and accelerating synergies between material science and engineering.Perspectives and challenges of electrocatalyst design strategies are proposed finally to further bridge the gaps between lab-scale research and large-scale electrocatalysis applications.展开更多
The electronic evolution of Mott insulators into exotic correlated phases remains puzzling,because of electron interaction and inhomogeneity.Introduction of individual imperfections in Mott insulators could help captu...The electronic evolution of Mott insulators into exotic correlated phases remains puzzling,because of electron interaction and inhomogeneity.Introduction of individual imperfections in Mott insulators could help capture the main mechanism and serve as a basis to understand the evolution.Here we utilize scanning tunneling microscopy to probe the atomic scale electronic structure of the spin-orbit-coupling assisted Mott insulator Sr_(3)Ir_(2)O_(7).It is found that the tunneling spectra exhibit a homogeneous Mott gap in defect-free regions,but near the oxygen vacancy in the rotated Ir O_(2)plane the local Mott gap size is significantly enhanced.We attribute the enhanced gap to the locally reduced hopping integral between the 5d electrons of neighboring Ir sites via the bridging planar oxygen p orbitals.Such bridging defects have a dramatic influence on local bandwidth,thus provide a new way to manipulate the strength of Mottness in a Mott insulator.展开更多
This article focuses on the investigation of the correlation between thermal bridging and various geometric configurations. The article employs QuickField software for conducting three-dimensional steady-state heat tr...This article focuses on the investigation of the correlation between thermal bridging and various geometric configurations. The article employs QuickField software for conducting three-dimensional steady-state heat transfer simulations to investigate the thermal behaviors of diverse geometric shapes. Significantly, this study involves the simulation of four distinct geometries including concrete circular, square, rectangular, and triangular column through an insulated concrete layer while all geometries maintain the consistent surface areas. The simulations yield findings indicating that circular thermal bridging has the best thermal performance, while rectangular thermal bridging displays comparatively the lowest thermal efficiency. Furthermore, the results indicate that alterations in the perimeter of thermal bridge interfaces, while maintaining a constant area, exert a more pronounced influence on the thermal performance of the geometries compared to proportional changes in area while preserving the perimeter. The study’s findings aid building designers and architects in creating more energy-efficient structural and architectural elements by incorporating thermally efficient geometries and forms. .展开更多
The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy ...The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.展开更多
With people living longer,the societal impact of age-related cognitive decline is becoming more pronounced(Crimmins,2015).Thus,it is increasingly important to comprehend the cognitive shifts linked to aging-whether th...With people living longer,the societal impact of age-related cognitive decline is becoming more pronounced(Crimmins,2015).Thus,it is increasingly important to comprehend the cognitive shifts linked to aging-whether they are physiological or pathological.展开更多
This work presents a study of the Paleogene sandstones of the Manika plateau in Kolwezi, DR Congo. These sandstones belong to the “Grès polymorphes” group, which together with the overlying “Sables ocre” make...This work presents a study of the Paleogene sandstones of the Manika plateau in Kolwezi, DR Congo. These sandstones belong to the “Grès polymorphes” group, which together with the overlying “Sables ocre” makes up the Kalahari Supergroup. Sedimentological and geochemical analyses have enabled us to characterize these sandstones and determine their origin, the conditions of their formation and the tectonic context in which they were developed. The results show that the sandstones are quartz arenites with a high level of mineralogical, textural and chemical maturity. They are recycled sandstones, formed in an intracratonic sedimentary basin, in the context of a passive continental margin, after a long fluvial transport of sediments. These sandstones initially come from intense alteration of magmatic rocks with felsic composition, mainly tonalite-trondhjemite-granodiorite (TTG) complexes, in hot, humid palaeoclimatic conditions and oxidizing environments.展开更多
The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the ...The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.展开更多
Context information is significant for semantic extraction and recovery of messages in semantic communication.However,context information is not fully utilized in the existing semantic communication systems since re-l...Context information is significant for semantic extraction and recovery of messages in semantic communication.However,context information is not fully utilized in the existing semantic communication systems since re-lationships between sentences are often ignored.In this paper,we propose an Extended Context-based Semantic Communication(ECSC)system for text transmission,in which context information within and between sentences is explored for semantic representation and recovery.At the encoder,self-attention and segment-level relative attention are used to extract context information within and between sentences,respectively.In addition,a gate mechanism is adopted at the encoder to incorporate the context information from different ranges.At the decoder,Transformer-XL is introduced to obtain more semantic information from the historical communication processes for semantic recovery.Simulation results show the effectiveness of our proposed model in improving the semantic accuracy between transmitted and recovered messages under various channel conditions.展开更多
A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu...A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.展开更多
In recent years,skeleton-based action recognition has made great achievements in Computer Vision.A graph convolutional network(GCN)is effective for action recognition,modelling the human skeleton as a spatio-temporal ...In recent years,skeleton-based action recognition has made great achievements in Computer Vision.A graph convolutional network(GCN)is effective for action recognition,modelling the human skeleton as a spatio-temporal graph.Most GCNs define the graph topology by physical relations of the human joints.However,this predefined graph ignores the spatial relationship between non-adjacent joint pairs in special actions and the behavior dependence between joint pairs,resulting in a low recognition rate for specific actions with implicit correlation between joint pairs.In addition,existing methods ignore the trend correlation between adjacent frames within an action and context clues,leading to erroneous action recognition with similar poses.Therefore,this study proposes a learnable GCN based on behavior dependence,which considers implicit joint correlation by constructing a dynamic learnable graph with extraction of specific behavior dependence of joint pairs.By using the weight relationship between the joint pairs,an adaptive model is constructed.It also designs a self-attention module to obtain their inter-frame topological relationship for exploring the context of actions.Combining the shared topology and the multi-head self-attention map,the module obtains the context-based clue topology to update the dynamic graph convolution,achieving accurate recognition of different actions with similar poses.Detailed experiments on public datasets demonstrate that the proposed method achieves better results and realizes higher quality representation of actions under various evaluation protocols compared to state-of-the-art methods.展开更多
Contract Bridge,a four-player imperfect information game,comprises two phases:bidding and playing.While computer programs excel at playing,bidding presents a challenging aspect due to the need for information exchange...Contract Bridge,a four-player imperfect information game,comprises two phases:bidding and playing.While computer programs excel at playing,bidding presents a challenging aspect due to the need for information exchange with partners and interference with communication of opponents.In this work,we introduce a Bridge bidding agent that combines supervised learning,deep reinforcement learning via self-play,and a test-time search approach.Our experiments demonstrate that our agent outperforms WBridge5,a highly regarded computer Bridge software that has won multiple world championships,by a performance of 0.98 IMPs(international match points)per deal over 10000 deals,with a much cost-effective approach.The performance significantly surpasses previous state-of-the-art(0.85 IMPs per deal).Note 0.1 IMPs per deal is a significant improvement in Bridge bidding.展开更多
Spatio-temporal variability and dynamics in Sahelian agro-pastoral zones make each local situation a special case. These specificities must be considered to guide the dissemination of agricultural options with a view ...Spatio-temporal variability and dynamics in Sahelian agro-pastoral zones make each local situation a special case. These specificities must be considered to guide the dissemination of agricultural options with a view to sustainable development. The territorial scale of municipalities is not sufficient for this necessary contextualization;the scale of the “village terroir” seems to be a better option. This is the hypothesis we put forward in the framework of the Global Collaboration for Resilient Food Systems program (CRFS), i.e. local context is spatially defined by village terroir. The study is based on data collected through participatory mapping and surveys in “village terroirs” in three regions of Niger (Maradi, Dosso and Tillabéri). Then the links between farm managers and their cultivated land, as well as the spatio-temporal dynamics of local context are analyzed. This study provides evidence of the existence and functional usefulness of the village terroir for farmers, their land management and their activities. It demonstrates the usefulness of contextualizing agricultural options at this scale. Their analysis elucidates the links between “terroirs village” and the specific functioning of the agrosocio-ecosystems acting on each of them, thus laying the systemic and geographical foundations for a model of the spatio- temporal dynamics of “village terroirs”. This initial work has opened up new perspectives in modeling and sustainable development.展开更多
Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variati...Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variations inUAV flight altitude,differences in object scales,as well as factors like flight speed and motion blur.To enhancethe detection efficacy of small targets in drone aerial imagery,we propose an enhanced You Only Look Onceversion 7(YOLOv7)algorithm based on multi-scale spatial context.We build the MSC-YOLO model,whichincorporates an additional prediction head,denoted as P2,to improve adaptability for small objects.We replaceconventional downsampling with a Spatial-to-Depth Convolutional Combination(CSPDC)module to mitigatethe loss of intricate feature details related to small objects.Furthermore,we propose a Spatial Context Pyramidwith Multi-Scale Attention(SCPMA)module,which captures spatial and channel-dependent features of smalltargets acrossmultiple scales.This module enhances the perception of spatial contextual features and the utilizationof multiscale feature information.On the Visdrone2023 and UAVDT datasets,MSC-YOLO achieves remarkableresults,outperforming the baseline method YOLOv7 by 3.0%in terms ofmean average precision(mAP).The MSCYOLOalgorithm proposed in this paper has demonstrated satisfactory performance in detecting small targets inUAV aerial photography,providing strong support for practical applications.展开更多
Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper...Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation.展开更多
Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study t...Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges.展开更多
基金the Natural Science Foundation of China(11922415,12274471)Guangdong Basic and Applied Basic Research Foundation(2022A1515011168,2019A1515011718,2019A1515011337)the Key Research and Development Program of Guangdong Province,China(2019B110209003).
文摘We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.
基金Supported by Financiamento e IncentivoàPesquisa(FIPE/HCPA)of Hospital de Clínicas de Porto Alegre,No.2020-0473.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is an aggressive malignant neoplasm that requires liver transplantation(LT).Despite patients with HCC being prioritized by most organ allocation systems worldwide,they still have to wait for long periods.Locoregional therapies(LRTs)are employed as bridging therapies in patients with HCC awaiting LT.Although largely used in the past,transarterial embolization(TAE)has been replaced by transarterial chemoembolization(TACE).However,the superiority of TACE over TAE has not been consistently shown in the literature.AIM To compare the outcomes of TACE and TAE in patients with HCC awaiting LT.METHODS All consecutive patients with HCC awaiting LT between 2011 and 2020 at a single center were included.All patients underwent LRT with either TACE or TAE.Some patients also underwent percutaneous ethanol injection(PEI),concom-itantly or in different treatment sessions.The choice of LRT for each HCC nodule was determined by a multidisciplinary consensus.The primary outcome was waitlist dropout due to tumor progression,and the secondary outcome was the occurrence of adverse events.In the subset of patients who underwent LT,complete pathological response and post-transplant recurrence-free survival were also assessed.RESULTS Twelve(18.5%)patients in the TACE group(only TACE and TACE+PEI;n=65)and 3(7.9%)patients in the TAE group(only TAE and TAE+PEI;n=38)dropped out of the waitlist due to tumor progression(P log-rank test=0.29).Adverse events occurred in 8(12.3%)and 2(5.3%)patients in the TACE and TAE groups,respectively(P=0.316).Forty-eight(73.8%)of the 65 patients in the TACE group and 29(76.3%)of the 38 patients in the TAE group underwent LT(P=0.818).Among these patients,complete pathological response was detected in 7(14.6%)and 9(31%)patients in the TACE and TAE groups,respectively(P=0.145).Post-LT,HCC recurred in 9(18.8%)and 4(13.8%)patients in the TACE and TAE groups,respectively(P=0.756).Posttransplant recurrence-free survival was similar between the groups(P log-rank test=0.71).CONCLUSION Dropout rates and posttransplant recurrence-free survival of TAE were similar to those of TACE in patients with HCC.Our study reinforces the hypothesis that TACE is not superior to TAE as a bridging therapy to LT in patients with HCC.
文摘Objective:To analyze the clinical effect of a simple egg membrane patch bridging method in repairing tympanic membrane perforation.Methods:A total of 93 tympanic membrane perforation patients admitted to the hospital between September 2022 and October 2023 were selected and divided into two groups according to the random number table method.The control group implemented the conventional treatment(n=46 cases),and the patch group adopted the simple egg membrane patch bridging method(n=47 cases).The healing rate of the tympanic membrane,the air-bone gap,the air conduction hearing threshold,the dry ear rate,and the incidence of complications in both groups were compared before and after treatment.Results:The healing rate of the tympanic membrane in the patch group was significantly higher than that of the control group(95.75%vs.76.09%),with P<0.05;there was no difference in the air-bone gap and air conduction hearing threshold levels between the two groups before treatment(P>0.05),and the hearing indexes of the patch group were significantly lower than those of the control group 3 months after treatment(P<0.05);the dry ear rate in the patch group was significantly higher than that of the control group after treatment(85.11%vs.67.39%),and the total incidence of complications was also significantly lower than that of the control group(6.38%vs.21.74%),with P<0.05.Conclusion:The simple egg membrane patch bridging method is effective in repairing tympanic membrane perforation,which can effectively improve patients’hearing levels and reduce the occurrence of post-treatment complications.Thus,it is worth popularizing and applying in the clinic.
基金supported by the National Key Research and Development Program of China, No. 2016YFC1101603 (to DYZ)the National Natural Science Foundation of China, Nos. 31640045 (to YHW), 81901251 (to ML)the Natural Science Foundation of Beijing of China, No. 7204323 (to ML)
文摘We previously prepared nerve growth factor poly-lactide co-glycolid sustained-release microspheres to treat rat sciatic nerve injury using the small gap sleeve technique.Multiple growth factors play a synergistic role in promoting the repair of peripheral nerve injury;as a result,in this study,we added basic fibroblast growth factors to the microspheres to further promote nerve regeneration.First,in an in vitro biomimetic microenvironment,we developed and used a drug screening biomimetic microfluidic chip to screen the optimal combination of nerve growth factor/basic fibroblast growth factor to promote the regeneration of Schwann cells.We found that 22.56 ng/mL nerve growth factor combined with 4.29 ng/mL basic fibroblast growth factor exhibited optimal effects on the proliferation of primary rat Schwann cells.The successfully prepared nerve growth factor-basic fibroblast growth factor-poly-lactide-co-glycolid sustained-release microspheres were used to treat rat sciatic nerve transection injury using the small gap sleeve bridge technique.Compared with epithelium sutures and small gap sleeve bridging alone,the small gap sleeve bridging technique combined with drug-free sustained-release microspheres has a stronger effect on rat sciatic nerve transfection injury repair at the structural and functional level.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)supported by National R&D Program through the National Research Foundation of Korea(NRF),grant number 2021M3H4A1A01079300the Korea Research Institute of Chemical Technology Core Research Program funded by the Korea Research Council for Industrial Science and Technology,grant number KS2222-10.
文摘Electrochemical water splitting represents one of the most promising technologies to produce green hydrogen,which can help to realize the goal of achieving carbon neutrality.While substantial efforts on a laboratory scale have been made for understanding fundamental catalysis and developing high-performance electrocatalysts for the two half-reactions involved in water electrocatalysis,much less attention has been paid to doing relevant research on a larger scale.For example,few such researches have been done on an industrial scale.Herein,we review the very recent endeavors to bridge the gaps between fundamental research and industrial applications for water electrolysis.We begin by introducing the fundamentals of electrochemical water splitting and then present comparisons of testing protocol,figure of merit,catalyst of interest,and manufacturing cost for laboratory and industry-based water-electrolysis research.Special attention is paid to tracking the surface reconstruction process and identifying real catalytic species under different testing conditions,which highlight the significant distinctions of corresponding electrochemical reconstruction mechanisms.Advances in catalyst designs for industry-relevant water electrolysis are also summarized,which reveal the progress of moving the practical applications forward and accelerating synergies between material science and engineering.Perspectives and challenges of electrocatalyst design strategies are proposed finally to further bridge the gaps between lab-scale research and large-scale electrocatalysis applications.
基金the National Key R&D Program of China(Grant No.2017YFA0302900)the Basic Science Center Project of National Natural Science Foundation of China(Grant No.51788104)+4 种基金supported in part by the Beijing Advanced Innovation Center for Future Chip(ICFC)Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physicssupported by the National Natural Science Foundation of China(Grant No.12074424)the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China。
文摘The electronic evolution of Mott insulators into exotic correlated phases remains puzzling,because of electron interaction and inhomogeneity.Introduction of individual imperfections in Mott insulators could help capture the main mechanism and serve as a basis to understand the evolution.Here we utilize scanning tunneling microscopy to probe the atomic scale electronic structure of the spin-orbit-coupling assisted Mott insulator Sr_(3)Ir_(2)O_(7).It is found that the tunneling spectra exhibit a homogeneous Mott gap in defect-free regions,but near the oxygen vacancy in the rotated Ir O_(2)plane the local Mott gap size is significantly enhanced.We attribute the enhanced gap to the locally reduced hopping integral between the 5d electrons of neighboring Ir sites via the bridging planar oxygen p orbitals.Such bridging defects have a dramatic influence on local bandwidth,thus provide a new way to manipulate the strength of Mottness in a Mott insulator.
文摘This article focuses on the investigation of the correlation between thermal bridging and various geometric configurations. The article employs QuickField software for conducting three-dimensional steady-state heat transfer simulations to investigate the thermal behaviors of diverse geometric shapes. Significantly, this study involves the simulation of four distinct geometries including concrete circular, square, rectangular, and triangular column through an insulated concrete layer while all geometries maintain the consistent surface areas. The simulations yield findings indicating that circular thermal bridging has the best thermal performance, while rectangular thermal bridging displays comparatively the lowest thermal efficiency. Furthermore, the results indicate that alterations in the perimeter of thermal bridge interfaces, while maintaining a constant area, exert a more pronounced influence on the thermal performance of the geometries compared to proportional changes in area while preserving the perimeter. The study’s findings aid building designers and architects in creating more energy-efficient structural and architectural elements by incorporating thermally efficient geometries and forms. .
基金supported by the National Natural Science Foundation of China(Grant Nos.42264004,42274033,and 41904012)the Open Fund of Hubei Luojia Laboratory(Grant Nos.2201000049 and 230100018)+2 种基金the Guangxi Universities’1,000 Young and Middle-aged Backbone Teachers Training Program,the Fundamental Research Funds for Central Universities(Grant No.2042022kf1197)the Natural Science Foundation of Hubei(Grant No.2020CFB282)the China Postdoctoral Science Foundation(Grant Nos.2020T130482,2018M630879)。
文摘The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.
基金Clévio Nóbrega’s laboratory is funded by the Cure CSB projectthe Viljem Julijan Association for Children with Rare Diseases(Slovenia)+1 种基金the Algarve Biomedical Center Research Institute(ABC-Ri)funded by CRESC Algarve 2020(Operation Code:ALG-01-0145-FEDER-072586)(to CN)。
文摘With people living longer,the societal impact of age-related cognitive decline is becoming more pronounced(Crimmins,2015).Thus,it is increasingly important to comprehend the cognitive shifts linked to aging-whether they are physiological or pathological.
文摘This work presents a study of the Paleogene sandstones of the Manika plateau in Kolwezi, DR Congo. These sandstones belong to the “Grès polymorphes” group, which together with the overlying “Sables ocre” makes up the Kalahari Supergroup. Sedimentological and geochemical analyses have enabled us to characterize these sandstones and determine their origin, the conditions of their formation and the tectonic context in which they were developed. The results show that the sandstones are quartz arenites with a high level of mineralogical, textural and chemical maturity. They are recycled sandstones, formed in an intracratonic sedimentary basin, in the context of a passive continental margin, after a long fluvial transport of sediments. These sandstones initially come from intense alteration of magmatic rocks with felsic composition, mainly tonalite-trondhjemite-granodiorite (TTG) complexes, in hot, humid palaeoclimatic conditions and oxidizing environments.
基金National Natural Science Foundation of China under Grant No.51879191。
文摘The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.
基金supported in part by the National Natural Science Foundation of China under Grant No.61931020,U19B2024,62171449,,62001483in part by the science and technology innovation Program of Hunan Province under Grant No.2021JJ40690.
文摘Context information is significant for semantic extraction and recovery of messages in semantic communication.However,context information is not fully utilized in the existing semantic communication systems since re-lationships between sentences are often ignored.In this paper,we propose an Extended Context-based Semantic Communication(ECSC)system for text transmission,in which context information within and between sentences is explored for semantic representation and recovery.At the encoder,self-attention and segment-level relative attention are used to extract context information within and between sentences,respectively.In addition,a gate mechanism is adopted at the encoder to incorporate the context information from different ranges.At the decoder,Transformer-XL is introduced to obtain more semantic information from the historical communication processes for semantic recovery.Simulation results show the effectiveness of our proposed model in improving the semantic accuracy between transmitted and recovered messages under various channel conditions.
基金supported by the Henan Provincial Science and Technology Research Project under Grant(152102310295).
文摘A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.
基金supported in part by the 2023 Key Supported Project of the 14th Five Year Plan for Education and Science in Hunan Province with No.ND230795.
文摘In recent years,skeleton-based action recognition has made great achievements in Computer Vision.A graph convolutional network(GCN)is effective for action recognition,modelling the human skeleton as a spatio-temporal graph.Most GCNs define the graph topology by physical relations of the human joints.However,this predefined graph ignores the spatial relationship between non-adjacent joint pairs in special actions and the behavior dependence between joint pairs,resulting in a low recognition rate for specific actions with implicit correlation between joint pairs.In addition,existing methods ignore the trend correlation between adjacent frames within an action and context clues,leading to erroneous action recognition with similar poses.Therefore,this study proposes a learnable GCN based on behavior dependence,which considers implicit joint correlation by constructing a dynamic learnable graph with extraction of specific behavior dependence of joint pairs.By using the weight relationship between the joint pairs,an adaptive model is constructed.It also designs a self-attention module to obtain their inter-frame topological relationship for exploring the context of actions.Combining the shared topology and the multi-head self-attention map,the module obtains the context-based clue topology to update the dynamic graph convolution,achieving accurate recognition of different actions with similar poses.Detailed experiments on public datasets demonstrate that the proposed method achieves better results and realizes higher quality representation of actions under various evaluation protocols compared to state-of-the-art methods.
文摘Contract Bridge,a four-player imperfect information game,comprises two phases:bidding and playing.While computer programs excel at playing,bidding presents a challenging aspect due to the need for information exchange with partners and interference with communication of opponents.In this work,we introduce a Bridge bidding agent that combines supervised learning,deep reinforcement learning via self-play,and a test-time search approach.Our experiments demonstrate that our agent outperforms WBridge5,a highly regarded computer Bridge software that has won multiple world championships,by a performance of 0.98 IMPs(international match points)per deal over 10000 deals,with a much cost-effective approach.The performance significantly surpasses previous state-of-the-art(0.85 IMPs per deal).Note 0.1 IMPs per deal is a significant improvement in Bridge bidding.
文摘Spatio-temporal variability and dynamics in Sahelian agro-pastoral zones make each local situation a special case. These specificities must be considered to guide the dissemination of agricultural options with a view to sustainable development. The territorial scale of municipalities is not sufficient for this necessary contextualization;the scale of the “village terroir” seems to be a better option. This is the hypothesis we put forward in the framework of the Global Collaboration for Resilient Food Systems program (CRFS), i.e. local context is spatially defined by village terroir. The study is based on data collected through participatory mapping and surveys in “village terroirs” in three regions of Niger (Maradi, Dosso and Tillabéri). Then the links between farm managers and their cultivated land, as well as the spatio-temporal dynamics of local context are analyzed. This study provides evidence of the existence and functional usefulness of the village terroir for farmers, their land management and their activities. It demonstrates the usefulness of contextualizing agricultural options at this scale. Their analysis elucidates the links between “terroirs village” and the specific functioning of the agrosocio-ecosystems acting on each of them, thus laying the systemic and geographical foundations for a model of the spatio- temporal dynamics of “village terroirs”. This initial work has opened up new perspectives in modeling and sustainable development.
基金the Key Research and Development Program of Hainan Province(Grant Nos.ZDYF2023GXJS163,ZDYF2024GXJS014)National Natural Science Foundation of China(NSFC)(Grant Nos.62162022,62162024)+2 种基金the Major Science and Technology Project of Hainan Province(Grant No.ZDKJ2020012)Hainan Provincial Natural Science Foundation of China(Grant No.620MS021)Youth Foundation Project of Hainan Natural Science Foundation(621QN211).
文摘Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variations inUAV flight altitude,differences in object scales,as well as factors like flight speed and motion blur.To enhancethe detection efficacy of small targets in drone aerial imagery,we propose an enhanced You Only Look Onceversion 7(YOLOv7)algorithm based on multi-scale spatial context.We build the MSC-YOLO model,whichincorporates an additional prediction head,denoted as P2,to improve adaptability for small objects.We replaceconventional downsampling with a Spatial-to-Depth Convolutional Combination(CSPDC)module to mitigatethe loss of intricate feature details related to small objects.Furthermore,we propose a Spatial Context Pyramidwith Multi-Scale Attention(SCPMA)module,which captures spatial and channel-dependent features of smalltargets acrossmultiple scales.This module enhances the perception of spatial contextual features and the utilizationof multiscale feature information.On the Visdrone2023 and UAVDT datasets,MSC-YOLO achieves remarkableresults,outperforming the baseline method YOLOv7 by 3.0%in terms ofmean average precision(mAP).The MSCYOLOalgorithm proposed in this paper has demonstrated satisfactory performance in detecting small targets inUAV aerial photography,providing strong support for practical applications.
基金Projects(52022113,52278546)supported by the National Natural Science Foundation of ChinaProject(2020EEEVL0403)supported by the China Earthquake Administration。
文摘Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation.
基金National Key R&D Program of China under Grant No.2022YFC3003603。
文摘Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges.