The present paper deals with the eigenvalues of complex nonlocal Sturm-Liouville boundary value problems.The bounds of the real and imaginary parts of eigenvalues for the nonlocal Sturm-Liouville differential equation...The present paper deals with the eigenvalues of complex nonlocal Sturm-Liouville boundary value problems.The bounds of the real and imaginary parts of eigenvalues for the nonlocal Sturm-Liouville differential equation involving complex nonlocal potential terms associated with nonlocal boundary conditions are obtained in terms of the integrable conditions of coefficients and the real part of the eigenvalues.展开更多
We determine all real meromorphic functions f in the plane such that f has finitely many zeros, the poles of f have bounded multiplicities, and f and F have finitely many non-real zeros, where F is a linear differenti...We determine all real meromorphic functions f in the plane such that f has finitely many zeros, the poles of f have bounded multiplicities, and f and F have finitely many non-real zeros, where F is a linear differential polynomial given by F = f (k) +Σk-1j=0ajf(j) , in which k≥2 and the coefficients aj are real numbers with a0≠0.展开更多
基金Supported by the National Nature Science Foundation of China(12101356,12101357,12071254,11771253)the National Science Foundation of Shandong Province(ZR2021QA065,ZR2020QA009,ZR2021MA047)the China Postdoctoral Science Foundation(2019M662313)。
文摘The present paper deals with the eigenvalues of complex nonlocal Sturm-Liouville boundary value problems.The bounds of the real and imaginary parts of eigenvalues for the nonlocal Sturm-Liouville differential equation involving complex nonlocal potential terms associated with nonlocal boundary conditions are obtained in terms of the integrable conditions of coefficients and the real part of the eigenvalues.
文摘We determine all real meromorphic functions f in the plane such that f has finitely many zeros, the poles of f have bounded multiplicities, and f and F have finitely many non-real zeros, where F is a linear differential polynomial given by F = f (k) +Σk-1j=0ajf(j) , in which k≥2 and the coefficients aj are real numbers with a0≠0.