期刊文献+
共找到547,859篇文章
< 1 2 250 >
每页显示 20 50 100
An End-To-End Hyperbolic Deep Graph Convolutional Neural Network Framework
1
作者 Yuchen Zhou Hongtao Huo +5 位作者 Zhiwen Hou Lingbin Bu Yifan Wang Jingyi Mao Xiaojun Lv Fanliang Bu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期537-563,共27页
Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to sca... Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to scale-free graphs with power-law distributions,resulting in substantial distortions.Moreover,most of the existing GCN models are shallow structures,which restricts their ability to capture dependencies among distant nodes and more refined high-order node features in scale-free graphs with hierarchical structures.To more broadly and precisely apply GCNs to real-world graphs exhibiting scale-free or hierarchical structures and utilize multi-level aggregation of GCNs for capturing high-level information in local representations,we propose the Hyperbolic Deep Graph Convolutional Neural Network(HDGCNN),an end-to-end deep graph representation learning framework that can map scale-free graphs from Euclidean space to hyperbolic space.In HDGCNN,we define the fundamental operations of deep graph convolutional neural networks in hyperbolic space.Additionally,we introduce a hyperbolic feature transformation method based on identity mapping and a dense connection scheme based on a novel non-local message passing framework.In addition,we present a neighborhood aggregation method that combines initial structural featureswith hyperbolic attention coefficients.Through the above methods,HDGCNN effectively leverages both the structural features and node features of graph data,enabling enhanced exploration of non-local structural features and more refined node features in scale-free or hierarchical graphs.Experimental results demonstrate that HDGCNN achieves remarkable performance improvements over state-ofthe-art GCNs in node classification and link prediction tasks,even when utilizing low-dimensional embedding representations.Furthermore,when compared to shallow hyperbolic graph convolutional neural network models,HDGCNN exhibits notable advantages and performance enhancements. 展开更多
关键词 Graph neural networks hyperbolic graph convolutional neural networks deep graph convolutional neural networks message passing framework
下载PDF
Theoretical Framework for a Polymorphic Network Environment
2
作者 Jiangxing Wu Junfei Li +2 位作者 Penghao Sun Yuxiang Hu Ziyong Li 《Engineering》 SCIE EI CAS CSCD 2024年第8期222-234,共13页
The question of whether an ideal network exists with global scalability in its full life cycle has always been a first-principles problem in the research of network systems and architectures.Thus far,it has not been p... The question of whether an ideal network exists with global scalability in its full life cycle has always been a first-principles problem in the research of network systems and architectures.Thus far,it has not been possible to scientifically practice the design criteria of an ideal network in a unimorphic network system,making it difficult to adapt to known services with clear application scenarios while supporting the ever-growing future services with unexpected characteristics.Here,we theoretically prove that no unimorphic network system can simultaneously meet the scalability requirement in a full cycle in three dimensions—the service-level agreement(S),multiplexity(M),and variousness(V)—which we name as the“impossible SMV triangle”dilemma.It is only by transforming the current network development paradigm that the contradiction between global scalability and a unified network infrastructure can be resolved from the perspectives of thinking,methodology,and practice norms.In this paper,we propose a theoretical framework called the polymorphic network environment(PNE),the first principle of which is to separate or decouple application network systems from the infrastructure environment and,under the given resource conditions,use core technologies such as the elementization of network baselines,the dynamic aggregation of resources,and collaborative software and hardware arrangements to generate the capability of the“network of networks.”This makes it possible to construct an ideal network system that is designed for change and capable of symbiosis and coexistence with the generative network morpha in the spatiotemporal dimensions.An environment test for principle verification shows that the generated representative application network modalities can not only coexist without mutual influence but also independently match well-defined multimedia services or custom services under the constraints of technical and economic indicators. 展开更多
关键词 Polymorphic network environment Impossible triangle network development paradigm Future network
下载PDF
Research on the Legal Framework of Content Regulations for Network Platforms
3
作者 Zhang Yin Liao Xinyue 《Contemporary Social Sciences》 2024年第1期137-155,共19页
In the era of the Internet,various network platforms have evolved into new hubs for information dissemination.Currently,China has established a platform-centered content regulation framework,wherein platforms proactiv... In the era of the Internet,various network platforms have evolved into new hubs for information dissemination.Currently,China has established a platform-centered content regulation framework,wherein platforms proactively enforce content regulations in accordance with legal censorship obligations.Additionally,platform policies and user agreements augment their authority in content regulation.The platforms can achieve cost-effective and highly efficient content regulation by leveraging their strategic advantages enabled by their own technical capabilities and extensive coverage.The platform self-regulation model,however,still faces challenges.First,accurately evaluating content remains a formidable task;second,ensuring effective platform publicity through self-regulation poses difficulties;third,users may potentially face disadvantages due to the platform’s right of self-regulation;and fourth,digital copyright owners face challenges when defending digital copyright disputes under the safe harbor rule.Therefore,it is imperative to establish,review,and revise the legal framework for content regulation of network platforms in order to enhance the efficiency of their governance systems.The formulation of the legal framework for content regulation of network platforms may encompass the following aspects:rationalizing obligations pertaining to platform content regulations,enhancing supervision over platform self-regulation,and establishing a dual-track responsibility system for digital copyright content regulation.This will ensure a harmonious balance among public interests,users’personal rights and interests,and commercial benefits through regulating the content on network platforms. 展开更多
关键词 content regulations platform self-regulation legal framework
下载PDF
Improved training framework in a neural network model for disruption prediction and its application on EXL-50
4
作者 蔡剑青 梁云峰 +15 位作者 Alexander KNIEPS 齐东凯 王二辉 向皓明 廖亮 黄杰 阳杰 黄佳 刘建文 Philipp DREWS 徐帅 顾翔 高轶琛 罗宇 李直 the EXL-50 Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期29-39,共11页
A neural network model with a classical annotation method has been used on the EXL-50tokamak to predict impending disruption.However,the results revealed issues of overfitting and overconfidence in predictions caused ... A neural network model with a classical annotation method has been used on the EXL-50tokamak to predict impending disruption.However,the results revealed issues of overfitting and overconfidence in predictions caused by inaccurate labeling.To mitigate these issues,an improved training framework has been proposed.In this approach,soft labels from previous training serve as teachers to supervise the further learning process;this has lead to a significant improvement in predictive model performance.Notably,this enhancement is primarily attributed to the coupling effect of the soft labels and correction mechanism.This improved training framework introduces an instance-specific label smoothing method,which reflects a more nuanced model assessment on the likelihood of a disruption.It presents a possible solution to effectively address the challenges associated with accurate labeling across different machines. 展开更多
关键词 neural network DISRUPTION soft label EXL-50 tokamak
下载PDF
Reliable Data Collection Model and Transmission Framework in Large-Scale Wireless Medical Sensor Networks
5
作者 Haosong Gou Gaoyi Zhang +2 位作者 RenêRipardo Calixto Senthil Kumar Jagatheesaperumal Victor Hugo C.de Albuquerque 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1077-1102,共26页
Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present ... Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present significant challenges,necessitating efficient data collection and reliable transmission services.This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs.The primary goal is to enhance the reliability of data collection and transmission services,ensuring a comprehensive and practical approach.Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability.Additionally,it emphasizes reliable data collection within clusters and establishes robust data transmission over multiple hops.These systematic improvements are designed to optimize the overall performance of the WSN in real-world scenarios.Simulation results of the proposed protocol validate its exceptional performance compared to other prominent data transmission schemes.The evaluation spans varying sensor densities,wireless channel conditions,and packet transmission rates,showcasing the protocol’s superiority in ensuring reliable and efficient data transfer.Our systematic end-to-end design successfully addresses the challenges posed by the instability of wireless links in large-scaleWSNs.By prioritizing fairness,reliability,and efficiency,the proposed protocol demonstrates its efficacy in enhancing data collection and transmission services,thereby offering a valuable contribution to the field of medical event-drivenWSNs. 展开更多
关键词 Wireless sensor networks reliable data transmission medical emergencies CLUSTER data collection routing scheme
下载PDF
A Framework for Driver DrowsinessMonitoring Using a Convolutional Neural Network and the Internet of Things
6
作者 Muhamad Irsan Rosilah Hassan +3 位作者 Anwar Hassan Ibrahim Mohamad Khatim Hasan Meng Chun Lam Wan Mohd Hirwani Wan Hussain 《Intelligent Automation & Soft Computing》 2024年第2期157-174,共18页
One of the major causes of road accidents is sleepy drivers.Such accidents typically result in fatalities and financial losses and disadvantage other road users.Numerous studies have been conducted to identify the dri... One of the major causes of road accidents is sleepy drivers.Such accidents typically result in fatalities and financial losses and disadvantage other road users.Numerous studies have been conducted to identify the driver’s sleepiness and integrate it into a warning system.Most studies have examined how the mouth and eyelids move.However,this limits the system’s ability to identify drowsiness traits.Therefore,this study designed an Accident Detection Framework(RPK)that could be used to reduce road accidents due to sleepiness and detect the location of accidents.The drowsiness detectionmodel used three facial parameters:Yawning,closed eyes(blinking),and an upright head position.This model used a Convolutional Neural Network(CNN)consisting of two phases.The initial phase involves video processing and facial landmark coordinate detection.The second phase involves developing the extraction of frame-based features using normalization methods.All these phases used OpenCV and TensorFlow.The dataset contained 5017 images with 874 open eyes images,850 closed eyes images,723 open-mouth images,725 closed-mouth images,761 sleepy-head images,and 1084 non-sleepy head images.The dataset of 5017 images was divided into the training set with 4505 images and the testing set with 512 images,with a ratio of 90:10.The results showed that the RPK design could detect sleepiness by using deep learning techniques with high accuracy on all three parameters;namely 98%for eye blinking,96%for mouth yawning,and 97%for head movement.Overall,the test results have provided an overview of how the developed RPK prototype can accurately identify drowsy drivers.These findings will have a significant impact on the improvement of road users’safety and mobility. 展开更多
关键词 Drowsy drivers convolutional neural network OPENCV MICROPROCESSOR face detection
下载PDF
Machine Learning Based Classifiers for QoE Prediction Framework in Video Streaming over 5G Wireless Networks 被引量:1
7
作者 K.B.Ajeyprasaath P.Vetrivelan 《Computers, Materials & Continua》 SCIE EI 2023年第4期1919-1939,共21页
Recently,the combination of video services and 5G networks have been gaining attention in the wireless communication realm.With the brisk advancement in 5G network usage and the massive popularity of threedimensional ... Recently,the combination of video services and 5G networks have been gaining attention in the wireless communication realm.With the brisk advancement in 5G network usage and the massive popularity of threedimensional video streaming,the quality of experience(QoE)of video in 5G systems has been receiving overwhelming significance from both customers and service provider ends.Therefore,effectively categorizing QoE-aware video streaming is imperative for achieving greater client satisfaction.This work makes the following contribution:First,a simulation platform based on NS-3 is introduced to analyze and improve the performance of video services.The simulation is formulated to offer real-time measurements,saving the expensive expenses associated with real-world equipment.Second,A valuable framework for QoE-aware video streaming categorization is introduced in 5G networks based on machine learning(ML)by incorporating the hyperparameter tuning(HPT)principle.It implements an enhanced hyperparameter tuning(EHPT)ensemble and decision tree(DT)classifier for video streaming categorization.The performance of the ML approach is assessed by considering precision,accuracy,recall,and computation time metrics for manifesting the superiority of these classifiers regarding video streaming categorization.This paper demonstrates that our ML classifiers achieve QoE prediction accuracy of 92.59%for(EHPT)ensemble and 87.037%for decision tree(DT)classifiers. 展开更多
关键词 QoE-aware video streaming 5G networks wireless networks ensemble method
下载PDF
Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning 被引量:5
8
作者 Xiaolu Li Ye Yang +3 位作者 Senming Xu Yuchang Gui Jianmin Chen Jianwen Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2723-2734,共12页
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s... Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022). 展开更多
关键词 bioinformatics analysis BIOMARKER CIBERSORT GEO dataset LASSO miRNA-mRNA network RNA sequencing spinal cord injury SVM-RFE weighted gene co-expression network analysis
下载PDF
Challenges and Opportunities in Preserving Key Structural Features of 3D-Printed Metal/Covalent Organic Framework 被引量:1
9
作者 Ximeng Liu Dan Zhao John Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期362-381,共20页
Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and ... Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and functional surfaces,which have significant values in various application areas.The emerging 3D printing technology further provides MOF and COFs(M/COFs)with higher designability of their macrostructure and demonstrates large achievements in their performance by shaping them into advanced 3D monoliths.However,the currently available 3D printing M/COFs strategy faces a major challenge of severe destruction of M/COFs’microstructural features,both during and after 3D printing.It is envisioned that preserving the microstructure of M/COFs in the 3D-printed monolith will bring a great improvement to the related applications.In this overview,the 3D-printed M/COFs are categorized into M/COF-mixed monoliths and M/COF-covered monoliths.Their differences in the properties,applications,and current research states are discussed.The up-to-date advancements in paste/scaffold composition and printing/covering methods to preserve the superior M/COF microstructure during 3D printing are further discussed for the two types of 3D-printed M/COF.Throughout the analysis of the current states of 3D-printed M/COFs,the expected future research direction to achieve a highly preserved microstructure in the 3D monolith is proposed. 展开更多
关键词 Metal-organic frameworks Covalent organic frameworks 3D printing Microstructure MONOLITH
下载PDF
Pluggable multitask diffractive neural networks based on cascaded metasurfaces 被引量:3
10
作者 Cong He Dan Zhao +8 位作者 Fei Fan Hongqiang Zhou Xin Li Yao Li Junjie Li Fei Dong Yin-Xiao Miao Yongtian Wang Lingling Huang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第2期23-31,共9页
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c... Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems. 展开更多
关键词 optical neural networks diffractive deep neural networks cascaded metasurfaces
下载PDF
Parallel Light Fields: A Perspective and A Framework 被引量:1
11
作者 Fei-Yue Wang Yu Shen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期542-544,共3页
Dear Editor,Light fields give relatively complete description of scenes from perspective of angles and positions of rays. At present time, most of the computer vision algorithms take 2D images as input which are simpl... Dear Editor,Light fields give relatively complete description of scenes from perspective of angles and positions of rays. At present time, most of the computer vision algorithms take 2D images as input which are simplified expression of light fields with depth information discarded. In theory, computer vision tasks may achieve better performance as long as complete light fields are acquired. 展开更多
关键词 COMPUTER framework simplified
下载PDF
Social-ecological perspective on the suicidal behaviour factors of early adolescents in China:a network analysis 被引量:3
12
作者 Yuan Li Peiying Li +5 位作者 Mengyuan Yuan Yonghan Li Xueying Zhang Juan Chen Gengfu Wang Puyu Su 《General Psychiatry》 CSCD 2024年第1期143-150,共8页
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl... Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts. 展开更多
关键词 network ANALYSIS PREVENTION
下载PDF
All‑Covalent Organic Framework Nanofilms Assembled Lithium‑Ion Capacitor to Solve the Imbalanced Charge Storage Kinetics 被引量:2
13
作者 Xiaoyang Xu Jia Zhang +6 位作者 Zihao Zhang Guandan Lu Wei Cao Ning Wang Yunmeng Xia Qingliang Feng Shanlin Qiao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期246-260,共15页
Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in superca... Free-standing covalent organic framework(COFs)nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li^(+) in lithium-ion batteries,while simultaneously exposing affluent active sites in supercapacitors.The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors(LICs).Herein,for the first time,custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode,respectively,for an all-COF nanofilm-structured LIC.The COFBTMB-TP nanofilm with strong electronegative–CF3 groups enables tuning the partial electron cloud density for Li^(+) migration to ensure the rapid anode kinetic process.The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity.Due to the aligned 1D channel,2D aromatic skeleton and accessible active sites of COF nanofilms,the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm^(−3) at a high-power density of 6 W cm^(−3),excellent rate capability,good cycle stability with the capacity retention rate of 77%after 5000-cycle.The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors.After being comprehensively explored via ex situ XPS,7Li solid-state NMR analyses,and DFT calculation,it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C–F bonds during lithium storage.COFBTMB-TP exhibits a strong interaction with Li^(+) due to the C–F,C=O,and C–N bonds,facilitating Li^(+) desolation and absorption from the electrolyte.This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices. 展开更多
关键词 Covalent organic frameworks Lithium-ion capacitor Charge storage kinetic
下载PDF
Research on Weighted Directed Dynamic Multiplexing Network of World Grain Trade Based on Improved MLP Framework
14
作者 Shanyan Zhu Shicai Gong 《Journal of Computer and Communications》 2023年第7期191-207,共17页
As the main food source for humans, the global movement of the three major grains significantly impacts human survival and development. To investigate the evolution of the world cereal trade network and its developmen... As the main food source for humans, the global movement of the three major grains significantly impacts human survival and development. To investigate the evolution of the world cereal trade network and its development trend, a weighted directed dynamic multiplexed network was established using historical data on cereal trade, cereal import dependency ratio, and arable land per capita. Inspired by the MLP framework, we redefined the weight determination method for computing layer weights and edge weights of the target layer, modified the CN, RA, AA, and PA indicators, and proposed the node similarity indicator for weighted directed networks. The AUC metric, which measures the accuracy of the algorithm, has also been improved in order to finally obtain the link prediction results for the grain trading network. The prediction results were processed, such as web-based presentation and community partition. It was found that the number of generalized trade agreements does not have a decisive impact on inter-country cereal trade. The former large grain exporters continue to play an important role in this trade network. In the future, the world trade in cereals will develop in the direction of more frequent intercontinental trade and gradually weaken the intracontinental cereal trade. 展开更多
关键词 MLP framework Food Security Dynamic Multiplexed networks Trade network Link Forecasting
下载PDF
MODELS:a six-step framework for developing an infectious disease model 被引量:1
15
作者 Jia Rui Kangguo Li +6 位作者 Hongjie Wei Xiaohao Guo Zeyu Zhao Yao Wang Wentao Song Buasiyamu Abudunaibi Tianmu Chen 《Infectious Diseases of Poverty》 SCIE CAS CSCD 2024年第2期66-76,共11页
Since the COVID-19 pandemic began,a plethora of modeling studies relatedto COVID-19 have been released.While some models stand out due to their innovative approaches,others are flawed in their methodology.To assist no... Since the COVID-19 pandemic began,a plethora of modeling studies relatedto COVID-19 have been released.While some models stand out due to their innovative approaches,others are flawed in their methodology.To assist novices,frontline healthcare workers,and public health policymakers in navigating the complex landscape of these models,we introduced a structured framework named MODELS.This framework is designed to detail the essential steps and considerations for creating a dependable epidemic model,offering direction to researchers engaged in epidemic modeling endeavors. 展开更多
关键词 Epidemic models Model construction MODELS framework
原文传递
Image super‐resolution via dynamic network 被引量:1
16
作者 Chunwei Tian Xuanyu Zhang +2 位作者 Qi Zhang Mingming Yang Zhaojie Ju 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期837-849,共13页
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp... Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet. 展开更多
关键词 CNN dynamic network image super‐resolution lightweight network
下载PDF
Mapping Network-Coordinated Stacked Gated Recurrent Units for Turbulence Prediction 被引量:1
17
作者 Zhiming Zhang Shangce Gao +2 位作者 MengChu Zhou Mengtao Yan Shuyang Cao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1331-1341,共11页
Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes i... Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU. 展开更多
关键词 Convolutional neural network deep learning recurrent neural network turbulence prediction wind load predic-tion.
下载PDF
Electrostatic Interaction-directed Construction of Hierarchical Nanostructured Carbon Composite with Dual Electrical Conductive Networks for Zinc-ion Hybrid Capacitors with Ultrastability 被引量:1
18
作者 Changyu Leng Zongbin Zhao +5 位作者 Xuzhen Wang Yuliya V.Fedoseeva Lyubov G.Bulusheva Alexander V.Okotrub Jian Xiao Jieshan Qiu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期184-192,共9页
Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-l... Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability. 展开更多
关键词 carbon composite electrostatic interaction metal-organic framework coating SELF-ASSEMBLY zinc-ion hybrid capacitor
下载PDF
Accelerating Oxygen Electrocatalysis Kinetics on Metal-Organic Frameworks via Bond Length Optimization 被引量:1
19
作者 Fan He Yingnan Liu +10 位作者 Xiaoxuan Yang Yaqi Chen Cheng‑Chieh Yang Chung‑Li Dong Qinggang He Bin Yang Zhongjian Li Yongbo Kuang Lecheng Lei Liming Dai Yang Hou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期279-290,共12页
Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hamper... Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting. 展开更多
关键词 Metal-organic frameworks Bond length adjustment Spin state transition Orbitals hybridization Water splitting
下载PDF
Artificial Intelligence Self-Organising (AI-SON) Frameworks for 5G-Enabled Networks: A Review
20
作者 Delali Kwasi Dake 《Journal of Computer and Communications》 2023年第4期33-62,共30页
The fifth generation (5G) networks will support the rapid emergence of Internet of Things (IoT) devices operating in a heterogeneous network (HetNet) system. These 5G-enabled IoT devices will result in a surge in data... The fifth generation (5G) networks will support the rapid emergence of Internet of Things (IoT) devices operating in a heterogeneous network (HetNet) system. These 5G-enabled IoT devices will result in a surge in data traffic for Mobile Network Operators (MNOs) to handle. At the same time, MNOs are preparing for a paradigm shift to decouple the control and forwarding plane in a Software-Defined Networking (SDN) architecture. Artificial Intelligence powered Self-Organising Networks (AI-SON) can fit into the SDN architecture by providing prediction and recommender systems to minimise costs in supporting the MNO’s infrastructure. This paper presents a review report on AI-SON frameworks in 5G and SDN. The review considers the dynamic deployment and functions of the AI-SON frameworks, especially for SDN support and applications. Each module in the frameworks was discussed to ascertain its relevance based on the context of AI-SON and SDN integration. After examining each framework, the identified gaps are summarised as open issues for future works. 展开更多
关键词 Self-Organising networks Artificial Intelligence Software-Defined networks 5G networks Big Data
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部