This letter solves an open question of origami paper spring risen by Yoneda et al.(Phys.Rev.E 2019).By using both dimensional analysis and data fitting,an universal scaling law of a paper spring is formulated.The scal...This letter solves an open question of origami paper spring risen by Yoneda et al.(Phys.Rev.E 2019).By using both dimensional analysis and data fitting,an universal scaling law of a paper spring is formulated.The scaling law shows that origami spring force obeys power square law of spring extension,however strong nonlinear to the total twist angle.The study has also successfully generalized the scaling law from the Poisson ratio 0.3 to an arbitrary Poisson's ratio with the help of dimensional analysis.展开更多
The arrangement of DNA-based nanostructures into the desired large-scale periodic pattern with the highest possible accuracy and control is essential for the DNA application in functional biomaterials;however, formati...The arrangement of DNA-based nanostructures into the desired large-scale periodic pattern with the highest possible accuracy and control is essential for the DNA application in functional biomaterials;however, formation of a DNA nanostructure pattern without utilizing the molecular interactions in nanotechnology field remains difficult. In this article, we use the optimal concentration and adsorption time of origami to induce DNA origami in the form of a large-scale 2D pattern on mica without changing the origami itself. DNA origami structures can form a pattern by close packing of symmetric and electrostatic interactions between ions, which was confirmed by the atomic force microscopy images. Furthermore, we identified favorable conditions for the concentration of enable pattern formation with DNA origami. This work provides an insight to understand the adsorption of DNA on mica and guides researches on regular DNA nanostructure pattern, which can serve as templates for pattern formation of proteins or other biomolecules.展开更多
DNA origami technique, a breakthrough in DNA nanotechnology, has been widely used to prepare complex DNA nanostructures with nanoscale addressability. However, the purity and yield are generally the bottleneck to appl...DNA origami technique, a breakthrough in DNA nanotechnology, has been widely used to prepare complex DNA nanostructures with nanoscale addressability. However, the purity and yield are generally the bottleneck to application of DNA nanostructures, and current methods for purifying DNA origami nanostructures in large quantities are time-consuming and laborious. This study aims to develop a scalable, cost-effective and contamination-free method of purifying DNA origami nanostructures. We employ an effective and convenient purification approach to purify planar rectangle DNA origami structures through rate-zonal centrifugation. By subjecting DNA origami samples to high centrifugal force in a density gradient media of glycerol, well-folded nanostructures and by-products are separated successfully, which are confirmed by agarose gel electrophoresis and atomic force microscopy(AFM). This method will aid the production of pure rectangle DNA origami nanostructures in large quantity.展开更多
DNA origami have been established as versatile templates to fabricate plasmonic nanostructures in predefined shapes and multiple dimensions. Limited to the size of DNA origami, which are approximate to 100 nm, it is h...DNA origami have been established as versatile templates to fabricate plasmonic nanostructures in predefined shapes and multiple dimensions. Limited to the size of DNA origami, which are approximate to 100 nm, it is hard to assemble more intricate plasmonic nanostructures in large scale. Herein, we used rectangular DNA origami as the template to anchor two 30-nm gold nanoparticles(Au NPs) which induced dimers nanostructures. Transmission electron microscopy(TEM) images showed the assembly of Au NPs with high yields. Using the linkers to organize the DNA origami templates into nanoribbons,chains of Au NPs were obtained, which was validated bythe TEM images. Furthermore, we observed a significant Raman signal enhancement from molecules covalently attached to the Au NP-dimers and Au NP-chains. Our method opens up the prospects of high-ordered plasmonic nanostructures with tailored optical properties.展开更多
提出了一种单顶点多折痕(single-vertex and multi-crease,SVMC)的双稳态折纸软体夹持器,具有结构简单、成本低、变形速度快、承载能力强等优点,有效改善了传统模型响应速度慢、夹持效率低等缺陷。该模型基于水弹结构建立,利用球面三角...提出了一种单顶点多折痕(single-vertex and multi-crease,SVMC)的双稳态折纸软体夹持器,具有结构简单、成本低、变形速度快、承载能力强等优点,有效改善了传统模型响应速度慢、夹持效率低等缺陷。该模型基于水弹结构建立,利用球面三角形余弦定理分析了折痕角度之间的关系并建立运动学方程;同时借助扭簧模型探究变形过程中的势能转化规律。分析了折痕长度与初始角度对能力存储和释放过程的影响,并以此为基础优化了模型结构参数。实验结果表明,当受到2.6 N的外部触发力时,软体夹持器可在61 ms内完成从外展姿态到内缩状态的变化,实现对目标表面的快速包络;同时,借助线绳驱动提供更大的夹紧力,完成对目标的高效稳定抓取。此模型可广泛应用于复杂轮廓目标抓取和快速食品分拣领域。展开更多
基金the financial supports from Xi’an University of Architecture and Technology
文摘This letter solves an open question of origami paper spring risen by Yoneda et al.(Phys.Rev.E 2019).By using both dimensional analysis and data fitting,an universal scaling law of a paper spring is formulated.The scaling law shows that origami spring force obeys power square law of spring extension,however strong nonlinear to the total twist angle.The study has also successfully generalized the scaling law from the Poisson ratio 0.3 to an arbitrary Poisson's ratio with the help of dimensional analysis.
基金supported by the National Natural Science Foundation of China(No.31670871)the Open Large Infrastructure Research of Chinese Academy of Sciences+1 种基金the Chinese Academy of Sciences Knowledge Innovation Project(No.QYZDJ-SSW-SLH019)the LU JIAXI International team program supported by the K.C.Wong Education Foundation and CAS
文摘The arrangement of DNA-based nanostructures into the desired large-scale periodic pattern with the highest possible accuracy and control is essential for the DNA application in functional biomaterials;however, formation of a DNA nanostructure pattern without utilizing the molecular interactions in nanotechnology field remains difficult. In this article, we use the optimal concentration and adsorption time of origami to induce DNA origami in the form of a large-scale 2D pattern on mica without changing the origami itself. DNA origami structures can form a pattern by close packing of symmetric and electrostatic interactions between ions, which was confirmed by the atomic force microscopy images. Furthermore, we identified favorable conditions for the concentration of enable pattern formation with DNA origami. This work provides an insight to understand the adsorption of DNA on mica and guides researches on regular DNA nanostructure pattern, which can serve as templates for pattern formation of proteins or other biomolecules.
基金Supported by Shanghai Natural Science Foundation(Nos.15ZR1448400 and 15ZR1448700)National Natural Science Foundation of China(No.31300825)
文摘DNA origami technique, a breakthrough in DNA nanotechnology, has been widely used to prepare complex DNA nanostructures with nanoscale addressability. However, the purity and yield are generally the bottleneck to application of DNA nanostructures, and current methods for purifying DNA origami nanostructures in large quantities are time-consuming and laborious. This study aims to develop a scalable, cost-effective and contamination-free method of purifying DNA origami nanostructures. We employ an effective and convenient purification approach to purify planar rectangle DNA origami structures through rate-zonal centrifugation. By subjecting DNA origami samples to high centrifugal force in a density gradient media of glycerol, well-folded nanostructures and by-products are separated successfully, which are confirmed by agarose gel electrophoresis and atomic force microscopy(AFM). This method will aid the production of pure rectangle DNA origami nanostructures in large quantity.
基金supported by the National Natural Science Foundation of China(No.21475064)the Natural Science Foundation of Jiangsu Province(No.BK20151504)+4 种基金Program for Changjiang Scholars and Innovative Research Team in University(No.IRT_15R37)Sci-Tech Support Plan of Jiangsu Province(No.BE2014719)the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.PAPD,YX03001)the Mega-projects of Science and Technology Research(No.AWS13C007)NUPTSF(No.214175)
文摘DNA origami have been established as versatile templates to fabricate plasmonic nanostructures in predefined shapes and multiple dimensions. Limited to the size of DNA origami, which are approximate to 100 nm, it is hard to assemble more intricate plasmonic nanostructures in large scale. Herein, we used rectangular DNA origami as the template to anchor two 30-nm gold nanoparticles(Au NPs) which induced dimers nanostructures. Transmission electron microscopy(TEM) images showed the assembly of Au NPs with high yields. Using the linkers to organize the DNA origami templates into nanoribbons,chains of Au NPs were obtained, which was validated bythe TEM images. Furthermore, we observed a significant Raman signal enhancement from molecules covalently attached to the Au NP-dimers and Au NP-chains. Our method opens up the prospects of high-ordered plasmonic nanostructures with tailored optical properties.
文摘提出了一种单顶点多折痕(single-vertex and multi-crease,SVMC)的双稳态折纸软体夹持器,具有结构简单、成本低、变形速度快、承载能力强等优点,有效改善了传统模型响应速度慢、夹持效率低等缺陷。该模型基于水弹结构建立,利用球面三角形余弦定理分析了折痕角度之间的关系并建立运动学方程;同时借助扭簧模型探究变形过程中的势能转化规律。分析了折痕长度与初始角度对能力存储和释放过程的影响,并以此为基础优化了模型结构参数。实验结果表明,当受到2.6 N的外部触发力时,软体夹持器可在61 ms内完成从外展姿态到内缩状态的变化,实现对目标表面的快速包络;同时,借助线绳驱动提供更大的夹紧力,完成对目标的高效稳定抓取。此模型可广泛应用于复杂轮廓目标抓取和快速食品分拣领域。