The path planning of Unmanned Aerial Vehicle(UAV)is a critical issue in emergency communication and rescue operations,especially in adversarial urban environments.Due to the continuity of the flying space,complex buil...The path planning of Unmanned Aerial Vehicle(UAV)is a critical issue in emergency communication and rescue operations,especially in adversarial urban environments.Due to the continuity of the flying space,complex building obstacles,and the aircraft's high dynamics,traditional algorithms cannot find the optimal collision-free flying path between the UAV station and the destination.Accordingly,in this paper,we study the fast UAV path planning problem in a 3D urban environment from a source point to a target point and propose a Three-Step Experience Buffer Deep Deterministic Policy Gradient(TSEB-DDPG)algorithm.We first build the 3D model of a complex urban environment with buildings and project the 3D building surface into many 2D geometric shapes.After transformation,we propose the Hierarchical Learning Particle Swarm Optimization(HL-PSO)to obtain the empirical path.Then,to ensure the accuracy of the obtained paths,the empirical path,the collision information and fast transition information are stored in the three experience buffers of the TSEB-DDPG algorithm as dynamic guidance information.The sampling ratio of each buffer is dynamically adapted to the training stages.Moreover,we designed a reward mechanism to improve the convergence speed of the DDPG algorithm for UAV path planning.The proposed TSEB-DDPG algorithm has also been compared to three widely used competitors experimentally,and the results show that the TSEB-DDPG algorithm can archive the fastest convergence speed and the highest accuracy.We also conduct experiments in real scenarios and compare the real path planning obtained by the HL-PSO algorithm,DDPG algorithm,and TSEB-DDPG algorithm.The results show that the TSEBDDPG algorithm can archive almost the best in terms of accuracy,the average time of actual path planning,and the success rate.展开更多
Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a nove...Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”.展开更多
Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame...Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.展开更多
Accurate trajectory prediction of surrounding road users is the fundamental input for motion planning,which enables safe autonomous driving on public roads.In this paper,a safe motion planning approach is proposed bas...Accurate trajectory prediction of surrounding road users is the fundamental input for motion planning,which enables safe autonomous driving on public roads.In this paper,a safe motion planning approach is proposed based on the deep learning-based trajectory prediction method.To begin with,a trajectory prediction model is established based on the graph neural network(GNN)that is trained utilizing the INTERACTION dataset.Then,the validated trajectory prediction model is used to predict the future trajectories of surrounding road users,including pedestrians and vehicles.In addition,a GNN prediction model-enabled motion planner is developed based on the model predictive control technique.Furthermore,two driving scenarios are extracted from the INTERACTION dataset to validate and evaluate the effectiveness of the proposed motion planning approach,i.e.,merging and roundabout scenarios.The results demonstrate that the proposed method can lower the risk and improve driving safety compared with the baseline method.展开更多
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo...The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.展开更多
By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning...By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning of mobile robots.However,the traditional DDQN algorithm suffers from sparse rewards and inefficient utilization of high-quality data.Targeting those problems,an improved DDQN algorithm based on average Q-value estimation and reward redistribution was proposed.First,to enhance the precision of the target Q-value,the average of multiple previously learned Q-values from the target Q network is used to replace the single Q-value from the current target Q network.Next,a reward redistribution mechanism is designed to overcome the sparse reward problem by adjusting the final reward of each action using the round reward from trajectory information.Additionally,a reward-prioritized experience selection method is introduced,which ranks experience samples according to reward values to ensure frequent utilization of high-quality data.Finally,simulation experiments are conducted to verify the effectiveness of the proposed algorithm in fixed-position scenario and random environments.The experimental results show that compared to the traditional DDQN algorithm,the proposed algorithm achieves shorter average running time,higher average return and fewer average steps.The performance of the proposed algorithm is improved by 11.43%in the fixed scenario and 8.33%in random environments.It not only plans economic and safe paths but also significantly improves efficiency and generalization in path planning,making it suitable for widespread application in autonomous navigation and industrial automation.展开更多
In community planning,due to the lack of evidence regarding the selection of media tools,this study examines how a common but differentiated ideal speech situation can be created as well as how more appropriate media ...In community planning,due to the lack of evidence regarding the selection of media tools,this study examines how a common but differentiated ideal speech situation can be created as well as how more appropriate media tools can be defined and selected in the community planning process.First,this study describes the concept and theoretical basis of media used in community planning from the perspectives of the multiple effects of media evolution on communicative planning.Second,the classification criteria and typical characteristics of media tools used to support community planning are clarified from three dimensions:acceptability,cost effectiveness,and applicability.Third,strategies for applying media tools in the four phases of communicative planning-namely,state analysis,problem identification,contradictory solution and optimization-are described.Finally,trends in the development of media tools for community planning are explored in terms of multistakeholder engagement,supporting scientific decision-making and multiple-type media integration.The results provide a reference for developing more inclusive,effective,and appropriate media tools for enhancing decision-making capacity and modernizing governance in community planning and policy-making processes.展开更多
Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical ...Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat.展开更多
Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of d...Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of dynamicvehicle scheduling and real-time route planning in urban public transportation systems, with a focus on busservices. It addresses the limitations of current shared mobility routing algorithms, which are primarily designedfor simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. Theresearch introduces an route planning algorithm designed to dynamically accommodate passenger travel needsand enable real-time route modifications. Unlike traditional methods, this algorithm leverages a queue-based,multi-objective heuristic A∗ approach, offering a solution to the inflexibility and limited coverage of suburbanbus routes. Also, this study conducts a comparative analysis of the proposed algorithm with solutions based onGenetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACO), focusing on calculation time, routelength, passenger waiting time, boarding time, and detour rate. The findings demonstrate that the proposedalgorithmsignificantly enhances route planning speed, achieving an 80–100-fold increase in efficiency over existingmodels, thereby supporting the real-time demands of Demand-Responsive Transportation (DRT) systems. Thestudy concludes that this algorithm not only optimizes route planning in bus transit but also presents a scalablesolution for improving urban mobility.展开更多
Introduction: Access to antiretroviral drugs has improved the survival of children infected with the Human Immunodeficiency Virus (HIV). As they reach adolescence, they are confronted with various constraints related ...Introduction: Access to antiretroviral drugs has improved the survival of children infected with the Human Immunodeficiency Virus (HIV). As they reach adolescence, they are confronted with various constraints related to the infection and its treatment, in addition to those of the growth period they are going through. The main aim of the study was to assess the acceptance and describe the experience of HIV infection by infected adolescents but also to investigate the factors associated with good acceptance and a positive experience. Methodology: The cross-sectional analytic study concerned HIV-infected adolescents aged 15 to 19 followed up at the Chantal Biya Foundation-Mother and Child Centre (CME-FCB) and the Yaoundé University Hospital Centre (CHUY) between February 2020 and June 2020. The study saw participants complete a questionnaire containing socio-demographic data and assessing acceptance and experience with the infection. Data analysis was accomplished using Epi info software version 7.2.2.6. Results: One hundred and thirteen HIV-infected adolescents were included in the study. The sex ratio was 0.68 and the mean age was 17 years. More than half of the adolescents had a good acceptance and positive experience with the infection. Related factors were the adolescent’s perception of good health and participation in an association with other infected adolescents. Conclusion: Emphasizing the psychological and educational follow-up of infected adolescents and encouraging their participation in associations for adolescents living with HIV could reduce the consequences of poor acceptance and ensure a better transition to adulthood. .展开更多
At a time when there is a growing public interest in animal welfare,it is critical to have objective means to assess the way that an animal experiences a situation.Objectivity is critical to ensure appropriate animal ...At a time when there is a growing public interest in animal welfare,it is critical to have objective means to assess the way that an animal experiences a situation.Objectivity is critical to ensure appropriate animal welfare outcomes.Existing behavioural,physiological,and neurobiological indicators that are used to assess animal welfare can verify the absence of extremely negative outcomes.But welfare is more than an absence of negative outcomes and an appropriate indicator should reflect the full spectrum of experience of an animal,from negative to positive.In this review,we draw from the knowledge of human biomedical science to propose a list of candidate biological markers(biomarkers)that should reflect the experiential state of non-human animals.The proposed biomarkers can be classified on their main function as endocrine,oxidative stress,non-coding molecular,and thermobiological markers.We also discuss practical challenges that must be addressed before any of these biomarkers can become useful to assess the experience of an animal in real-life.展开更多
Objective:The objective of this study is to comprehensively understand the psychological experience of primiparous women during breastfeeding while dealing with lactating mastitis and to establish a reliable foundatio...Objective:The objective of this study is to comprehensively understand the psychological experience of primiparous women during breastfeeding while dealing with lactating mastitis and to establish a reliable foundation for tailored support measures.Methods:Twenty primiparous mothers from a tertiary hospital in Beijing between January and March 2023 were chosen using purposive sampling for semi-structured interviews.After conducting 20 interviews,data saturation was achieved.The Colaizzi’s seven-step analytical approach was employed to analyze,summarize,and refine the identified themes.Results:Among primiparous women afflicted by lactating mastitis,the primary themes regarding breastfeeding attitudes included three key aspects:(1)uncertainty during the initial diagnosis phase,(2)intricate emotional journey during treatment,and(3)positive psychological outlook during the recovery stage.Conclusion:Primiparous women undergoing lactating mastitis experience substantial physical and psychological strain.It is crucial for medical personnel,family caregivers,and society at large to be attuned to the emotions of these patients.Tailored support measures should be offered to enhance patients’physical and mental well-being and facilitate disease recovery.展开更多
This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulatio...This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulations were carried out on concentrically and eccentrically loaded BRB specimens to investigate the mechanical properties,energy dissipation performance,stress distribution,and high-order deformation pattern.The experimental and numerical results showed that compared to the concentrically loaded BRBs,the stiffness,yield force,cumulated plastic ductility(CPD)coefficient,equivalent viscous damping coefficient and energy dissipation decreased,and the yield displacement and compression strength adjustment factor increased for the eccentrically loaded BRBs.With the existence of the out-of-plane eccentricity,the initial yield position changes from the yield segment to the junction between the yield segment and transition segment under a tensile load,while the initial high-order buckling pattern changes from a first-order C-shape to a secondorder S-shape under a compressive load.展开更多
With the gradual completion of the overall planning of city and county land space,the detailed planning will be prepared according to the requirements of transmitting and refining the upper planning.Industrial parks a...With the gradual completion of the overall planning of city and county land space,the detailed planning will be prepared according to the requirements of transmitting and refining the upper planning.Industrial parks are one of the“main forces”of local economic development,and the preparation of their detailed planning will escort their development.The key points of the Control Indicators of Construction Land in Industrial Projectsissued in 2008 and 2023 were compared,and the new requirements for detailed planning under the background of territorial space and the contradictions between the detailed planning of industrial parks and the overall planning of the upper territorial space were sorted out based on the summary of the existing problems in the development of chemical parks.It provides some ideas for the practice of detailed planning of chemical industrial parks under the background of territorial space.展开更多
Introduction: Postpartum family planning is the prevention of pregnancies during the 12 months following childbirth. Few studies have been devoted to postpartum family planning in Mali. Our work will contribute to red...Introduction: Postpartum family planning is the prevention of pregnancies during the 12 months following childbirth. Few studies have been devoted to postpartum family planning in Mali. Our work will contribute to reducing unmet need for family planning. Objective: To study the use of contraceptive methods in the postpartum period in the obstetrics and gynecology unit of Timbuktu hospital. Materials and Methods: This was a descriptive and analytical cross-sectional study with prospective collection of data from January 1, 2022 to December 31, 2023. All women who gave birth having chosen and benefited from a contraceptive method were included. The statistical test used was the Fisher test with a significance threshold fixed at 5%. Results: The frequency of contraception in the postpartum period was 17.03%. The average age of clients was 26.14% with extremes of 14 and 45 years. They were paupiparous at 56.4% with an inter-birth interval of less than 12 months at 12.3%. More than half of the counseling (58.5%) was done during postnatal visits. The methods chosen were implants at 48.1%, injectable progestins at 21.3%, intrauterine device at 14.7%, miro-progestin pills at 13.5%, tubal ligation at 1 .4% and condoms at 1%. The regular follow-up rate was 51.1% of cases and 25.6% had no follow-up. Conclusion: The overall rate of postpartum family planning of 17.08% remains low. Improving FP staff skills will reduce unmet needs and contribute to increasing contraceptive prevalence in Timbuktu.展开更多
With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage co...With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.展开更多
Background: Globally, an estimated 80 million unintended pregnancies comprising both mistimed and unwanted pregnancies are recorded yearly. Yet only half of the women at risk of mistimed pregnancy use contraceptives. ...Background: Globally, an estimated 80 million unintended pregnancies comprising both mistimed and unwanted pregnancies are recorded yearly. Yet only half of the women at risk of mistimed pregnancy use contraceptives. In developing countries, over 100 million females have unmet need, and national surveys in Ghana indicate 23% unmet need rate. Methods: Using a cross-sectional community-based approach, a sample size of 300 women of reproductive age were selected using multi-step cluster sampling techniques. The study was quantitative, using structured interviewer-administered questionnaires. Results: Two-third (66%) of the women in reproductive age still had unmet need, 71% were currently pregnant, and more than a third (36%) confirmed ever having a mistimed pregnancy. Fifty-three percent (53%) of the women confirmed never communicating with their partners on family planning issues, a little below half (45%) took their own health care decisions. Seventy nine percent (79%) ever received family planning services from a health professional. Factors related to unmet needs included mistimed pregnancy, level of education, preferred birth/pregnancy interval, communication between partners and the autonomy to spend self-earnings. Conclusion: Considering that high rates of unmet need results in mistimed pregnancy, improved policies around the influence of unmet need on mistimed pregnancies are needed.展开更多
The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the...The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the high cost and long duration of operational tests,it is essential to plan the test in advance.To solve the problem of planning UAV swarm operational test,this study considers the multi-stage feature of a UAV swarm mission,composed of launch,flight and combat stages,and proposes a method to find test plans that can maximize mission reliability.Therefore,a multi-stage mission reliability model for a UAV swarm is proposed to ensure successful implementation of the mission.A multi-objective integer optimization method that considers both mission reliability and cost is then formulated to obtain the optimal test plans.This study first constructs a mission reliability model for the UAV swarm in the combat stage.Then,the launch stage and flight stage are integrated to develop a complete PMS(Phased Mission Systems)reliability model.Finally,the Binary Decision Diagrams(BDD)and Multi Objective Quantum Particle Swarm Optimization(MOQPSO)methods are proposed to solve the model.The optimal plans considering both reliability and cost are obtained.The proposed model supports the planning of UAV swarm operational tests and represents a meaningful exploration of UAV swarm test planning.展开更多
In the domain of autonomous industrial manipulators,precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance,such as handling,heat sealing,and stacking....In the domain of autonomous industrial manipulators,precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance,such as handling,heat sealing,and stacking.While Multi-Degree-of-Freedom(MDOF)manipulators offer kinematic redundancy,aiding in the derivation of optimal inverse kinematic solutions to meet position and posture requisites,their path planning entails intricate multiobjective optimization,encompassing path,posture,and joint motion optimization.Achieving satisfactory results in practical scenarios remains challenging.In response,this study introduces a novel Reverse Path Planning(RPP)methodology tailored for industrial manipulators.The approach commences by conceptualizing the manipulator’s end-effector as an agent within a reinforcement learning(RL)framework,wherein the state space,action set,and reward function are precisely defined to expedite the search for an initial collision-free path.To enhance convergence speed,the Q-learning algorithm in RL is augmented with Dyna-Q.Additionally,we formulate the cylindrical bounding box of the manipulator based on its Denavit-Hartenberg(DH)parameters and propose a swift collision detection technique.Furthermore,the motion performance of the end-effector is refined through a bidirectional search,and joint weighting coefficients are introduced to mitigate motion in high-power joints.The efficacy of the proposed RPP methodology is rigorously examined through extensive simulations conducted on a six-degree-of-freedom(6-DOF)manipulator encountering two distinct obstacle configurations and target positions.Experimental results substantiate that the RPP method adeptly orchestrates the computation of the shortest collision-free path while adhering to specific posture constraints at the target point.Moreover,itminimizes both posture angle deviations and joint motion,showcasing its prowess in enhancing the operational performance of MDOF industrial manipulators.展开更多
Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of th...Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of the neighborhood search strategy,the robots could hardly obtain the most optimal global path.A global path planning algorithm,denoted as EDG*,is proposed by expanding nodes using a well-designed expanding disconnected graph operator(EDG)in this paper.Firstly,all obstacles are marked and their corners are located through the map pre-processing.Then,the EDG operator is designed to find points in non-obstruction areas to complete the rapid expansion of disconnected nodes.Finally,the EDG*heuristic iterative algorithm is proposed.It selects the candidate node through a specific valuation function and realizes the node expansion while avoiding collision with a minimum offset.Path planning experiments were conducted in a typical indoor environment and on the public dataset CSM.The result shows that the proposed EDG*reduced the planning time by more than 90%and total length of paths reduced by more than 4.6%.Compared to A*,Dijkstra and JPS,EDG*does not show an exponential explosion effect in map size.The EDG*showed better performance in terms of path smoothness,and collision avoidance.This shows that the EDG*algorithm proposed in this paper can improve the efficiency of path planning and enhance path quality.展开更多
基金supported in part by the Hubei Provincial Science and Technology Major Project of China(Grant No.2020AEA011)in part by the National Ethnic Affairs Commission of the People’s Republic of China(Training Program for Young and Middle-aged Talents)(No:MZR20007)+4 种基金in part by the National Natural Science Foundation of China(Grant No.61902437)in part by the Hubei Provincial Natural Science Foundation of China(Grant No.2020CFB629)in part by the Application Foundation Frontier Project of Wuhan Science and Technology Program(Grant No.2020020601012267)in part by the Fundamental Research Funds for the Central Universities,South-Central MinZu University(No:CZQ21026)in part by the Special Project on Regional Collaborative Innovation of Xinjiang Uygur Autonomous Region(Plan to Aid Xinjiang with Science and Technology)(2022E02035)。
文摘The path planning of Unmanned Aerial Vehicle(UAV)is a critical issue in emergency communication and rescue operations,especially in adversarial urban environments.Due to the continuity of the flying space,complex building obstacles,and the aircraft's high dynamics,traditional algorithms cannot find the optimal collision-free flying path between the UAV station and the destination.Accordingly,in this paper,we study the fast UAV path planning problem in a 3D urban environment from a source point to a target point and propose a Three-Step Experience Buffer Deep Deterministic Policy Gradient(TSEB-DDPG)algorithm.We first build the 3D model of a complex urban environment with buildings and project the 3D building surface into many 2D geometric shapes.After transformation,we propose the Hierarchical Learning Particle Swarm Optimization(HL-PSO)to obtain the empirical path.Then,to ensure the accuracy of the obtained paths,the empirical path,the collision information and fast transition information are stored in the three experience buffers of the TSEB-DDPG algorithm as dynamic guidance information.The sampling ratio of each buffer is dynamically adapted to the training stages.Moreover,we designed a reward mechanism to improve the convergence speed of the DDPG algorithm for UAV path planning.The proposed TSEB-DDPG algorithm has also been compared to three widely used competitors experimentally,and the results show that the TSEB-DDPG algorithm can archive the fastest convergence speed and the highest accuracy.We also conduct experiments in real scenarios and compare the real path planning obtained by the HL-PSO algorithm,DDPG algorithm,and TSEB-DDPG algorithm.The results show that the TSEBDDPG algorithm can archive almost the best in terms of accuracy,the average time of actual path planning,and the success rate.
基金the National Key Research and Development Program of China(2021YFF0900800)the National Natural Science Foundation of China(61972276,62206116,62032016)+2 种基金the New Liberal Arts Reform and Practice Project of National Ministry of Education(2021170002)the Open Research Fund of the State Key Laboratory for Management and Control of Complex Systems(20210101)Tianjin University Talent Innovation Reward Program for Literature and Science Graduate Student(C1-2022-010)。
文摘Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”.
基金the financial support of the National Key Research and Development Program of China(2020AAA0108100)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development for funding。
文摘Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.
基金Supported by National Natural Science Foundation of China(Grant Nos.52222215,52072051)Chongqing Municipal Natural Science Foundation of China(Grant No.CSTB2023NSCQ-JQX0003).
文摘Accurate trajectory prediction of surrounding road users is the fundamental input for motion planning,which enables safe autonomous driving on public roads.In this paper,a safe motion planning approach is proposed based on the deep learning-based trajectory prediction method.To begin with,a trajectory prediction model is established based on the graph neural network(GNN)that is trained utilizing the INTERACTION dataset.Then,the validated trajectory prediction model is used to predict the future trajectories of surrounding road users,including pedestrians and vehicles.In addition,a GNN prediction model-enabled motion planner is developed based on the model predictive control technique.Furthermore,two driving scenarios are extracted from the INTERACTION dataset to validate and evaluate the effectiveness of the proposed motion planning approach,i.e.,merging and roundabout scenarios.The results demonstrate that the proposed method can lower the risk and improve driving safety compared with the baseline method.
基金the National Key Research and Development Program of China under Grant 2021YFB3301300the National Natural Science Foundation of China under Grant 62203213+1 种基金the Natural Science Foundation of Jiangsu Province under Grant BK20220332the Open Project Program of Fujian Provincial Key Laboratory of Intelligent Identification and Control of Complex Dynamic System under Grant 2022A0004.
文摘The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.
基金funded by National Natural Science Foundation of China(No.62063006)Guangxi Science and Technology Major Program(No.2022AA05002)+1 种基金Key Laboratory of AI and Information Processing(Hechi University),Education Department of Guangxi Zhuang Autonomous Region(No.2022GXZDSY003)Central Leading Local Science and Technology Development Fund Project of Wuzhou(No.202201001).
文摘By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning of mobile robots.However,the traditional DDQN algorithm suffers from sparse rewards and inefficient utilization of high-quality data.Targeting those problems,an improved DDQN algorithm based on average Q-value estimation and reward redistribution was proposed.First,to enhance the precision of the target Q-value,the average of multiple previously learned Q-values from the target Q network is used to replace the single Q-value from the current target Q network.Next,a reward redistribution mechanism is designed to overcome the sparse reward problem by adjusting the final reward of each action using the round reward from trajectory information.Additionally,a reward-prioritized experience selection method is introduced,which ranks experience samples according to reward values to ensure frequent utilization of high-quality data.Finally,simulation experiments are conducted to verify the effectiveness of the proposed algorithm in fixed-position scenario and random environments.The experimental results show that compared to the traditional DDQN algorithm,the proposed algorithm achieves shorter average running time,higher average return and fewer average steps.The performance of the proposed algorithm is improved by 11.43%in the fixed scenario and 8.33%in random environments.It not only plans economic and safe paths but also significantly improves efficiency and generalization in path planning,making it suitable for widespread application in autonomous navigation and industrial automation.
基金supported by the National Key Research and Development Program of China under the theme“Key technologies for urban sustainable development evaluation and decision-making support”[Grant No.2022YFC3802900].
文摘In community planning,due to the lack of evidence regarding the selection of media tools,this study examines how a common but differentiated ideal speech situation can be created as well as how more appropriate media tools can be defined and selected in the community planning process.First,this study describes the concept and theoretical basis of media used in community planning from the perspectives of the multiple effects of media evolution on communicative planning.Second,the classification criteria and typical characteristics of media tools used to support community planning are clarified from three dimensions:acceptability,cost effectiveness,and applicability.Third,strategies for applying media tools in the four phases of communicative planning-namely,state analysis,problem identification,contradictory solution and optimization-are described.Finally,trends in the development of media tools for community planning are explored in terms of multistakeholder engagement,supporting scientific decision-making and multiple-type media integration.The results provide a reference for developing more inclusive,effective,and appropriate media tools for enhancing decision-making capacity and modernizing governance in community planning and policy-making processes.
文摘Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat.
文摘Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of dynamicvehicle scheduling and real-time route planning in urban public transportation systems, with a focus on busservices. It addresses the limitations of current shared mobility routing algorithms, which are primarily designedfor simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. Theresearch introduces an route planning algorithm designed to dynamically accommodate passenger travel needsand enable real-time route modifications. Unlike traditional methods, this algorithm leverages a queue-based,multi-objective heuristic A∗ approach, offering a solution to the inflexibility and limited coverage of suburbanbus routes. Also, this study conducts a comparative analysis of the proposed algorithm with solutions based onGenetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACO), focusing on calculation time, routelength, passenger waiting time, boarding time, and detour rate. The findings demonstrate that the proposedalgorithmsignificantly enhances route planning speed, achieving an 80–100-fold increase in efficiency over existingmodels, thereby supporting the real-time demands of Demand-Responsive Transportation (DRT) systems. Thestudy concludes that this algorithm not only optimizes route planning in bus transit but also presents a scalablesolution for improving urban mobility.
文摘Introduction: Access to antiretroviral drugs has improved the survival of children infected with the Human Immunodeficiency Virus (HIV). As they reach adolescence, they are confronted with various constraints related to the infection and its treatment, in addition to those of the growth period they are going through. The main aim of the study was to assess the acceptance and describe the experience of HIV infection by infected adolescents but also to investigate the factors associated with good acceptance and a positive experience. Methodology: The cross-sectional analytic study concerned HIV-infected adolescents aged 15 to 19 followed up at the Chantal Biya Foundation-Mother and Child Centre (CME-FCB) and the Yaoundé University Hospital Centre (CHUY) between February 2020 and June 2020. The study saw participants complete a questionnaire containing socio-demographic data and assessing acceptance and experience with the infection. Data analysis was accomplished using Epi info software version 7.2.2.6. Results: One hundred and thirteen HIV-infected adolescents were included in the study. The sex ratio was 0.68 and the mean age was 17 years. More than half of the adolescents had a good acceptance and positive experience with the infection. Related factors were the adolescent’s perception of good health and participation in an association with other infected adolescents. Conclusion: Emphasizing the psychological and educational follow-up of infected adolescents and encouraging their participation in associations for adolescents living with HIV could reduce the consequences of poor acceptance and ensure a better transition to adulthood. .
基金This research was supported by Meat and Livestock Australia grant P.PSH.1232,the Australasian Pork Research Institute Ltd grant 5A-113,The University of Queensland and The University of Western Australia.
文摘At a time when there is a growing public interest in animal welfare,it is critical to have objective means to assess the way that an animal experiences a situation.Objectivity is critical to ensure appropriate animal welfare outcomes.Existing behavioural,physiological,and neurobiological indicators that are used to assess animal welfare can verify the absence of extremely negative outcomes.But welfare is more than an absence of negative outcomes and an appropriate indicator should reflect the full spectrum of experience of an animal,from negative to positive.In this review,we draw from the knowledge of human biomedical science to propose a list of candidate biological markers(biomarkers)that should reflect the experiential state of non-human animals.The proposed biomarkers can be classified on their main function as endocrine,oxidative stress,non-coding molecular,and thermobiological markers.We also discuss practical challenges that must be addressed before any of these biomarkers can become useful to assess the experience of an animal in real-life.
基金supported by the 2022 Capital’s Funds for Health Improvement and Research(CFH)(2022-2-4202).
文摘Objective:The objective of this study is to comprehensively understand the psychological experience of primiparous women during breastfeeding while dealing with lactating mastitis and to establish a reliable foundation for tailored support measures.Methods:Twenty primiparous mothers from a tertiary hospital in Beijing between January and March 2023 were chosen using purposive sampling for semi-structured interviews.After conducting 20 interviews,data saturation was achieved.The Colaizzi’s seven-step analytical approach was employed to analyze,summarize,and refine the identified themes.Results:Among primiparous women afflicted by lactating mastitis,the primary themes regarding breastfeeding attitudes included three key aspects:(1)uncertainty during the initial diagnosis phase,(2)intricate emotional journey during treatment,and(3)positive psychological outlook during the recovery stage.Conclusion:Primiparous women undergoing lactating mastitis experience substantial physical and psychological strain.It is crucial for medical personnel,family caregivers,and society at large to be attuned to the emotions of these patients.Tailored support measures should be offered to enhance patients’physical and mental well-being and facilitate disease recovery.
基金National Natural Science Foundation of China under Grant No.51978184。
文摘This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulations were carried out on concentrically and eccentrically loaded BRB specimens to investigate the mechanical properties,energy dissipation performance,stress distribution,and high-order deformation pattern.The experimental and numerical results showed that compared to the concentrically loaded BRBs,the stiffness,yield force,cumulated plastic ductility(CPD)coefficient,equivalent viscous damping coefficient and energy dissipation decreased,and the yield displacement and compression strength adjustment factor increased for the eccentrically loaded BRBs.With the existence of the out-of-plane eccentricity,the initial yield position changes from the yield segment to the junction between the yield segment and transition segment under a tensile load,while the initial high-order buckling pattern changes from a first-order C-shape to a secondorder S-shape under a compressive load.
文摘With the gradual completion of the overall planning of city and county land space,the detailed planning will be prepared according to the requirements of transmitting and refining the upper planning.Industrial parks are one of the“main forces”of local economic development,and the preparation of their detailed planning will escort their development.The key points of the Control Indicators of Construction Land in Industrial Projectsissued in 2008 and 2023 were compared,and the new requirements for detailed planning under the background of territorial space and the contradictions between the detailed planning of industrial parks and the overall planning of the upper territorial space were sorted out based on the summary of the existing problems in the development of chemical parks.It provides some ideas for the practice of detailed planning of chemical industrial parks under the background of territorial space.
文摘Introduction: Postpartum family planning is the prevention of pregnancies during the 12 months following childbirth. Few studies have been devoted to postpartum family planning in Mali. Our work will contribute to reducing unmet need for family planning. Objective: To study the use of contraceptive methods in the postpartum period in the obstetrics and gynecology unit of Timbuktu hospital. Materials and Methods: This was a descriptive and analytical cross-sectional study with prospective collection of data from January 1, 2022 to December 31, 2023. All women who gave birth having chosen and benefited from a contraceptive method were included. The statistical test used was the Fisher test with a significance threshold fixed at 5%. Results: The frequency of contraception in the postpartum period was 17.03%. The average age of clients was 26.14% with extremes of 14 and 45 years. They were paupiparous at 56.4% with an inter-birth interval of less than 12 months at 12.3%. More than half of the counseling (58.5%) was done during postnatal visits. The methods chosen were implants at 48.1%, injectable progestins at 21.3%, intrauterine device at 14.7%, miro-progestin pills at 13.5%, tubal ligation at 1 .4% and condoms at 1%. The regular follow-up rate was 51.1% of cases and 25.6% had no follow-up. Conclusion: The overall rate of postpartum family planning of 17.08% remains low. Improving FP staff skills will reduce unmet needs and contribute to increasing contraceptive prevalence in Timbuktu.
基金supported by Science and Technology Project of SGCC(SGSW0000FZGHBJS2200070)。
文摘With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.
文摘Background: Globally, an estimated 80 million unintended pregnancies comprising both mistimed and unwanted pregnancies are recorded yearly. Yet only half of the women at risk of mistimed pregnancy use contraceptives. In developing countries, over 100 million females have unmet need, and national surveys in Ghana indicate 23% unmet need rate. Methods: Using a cross-sectional community-based approach, a sample size of 300 women of reproductive age were selected using multi-step cluster sampling techniques. The study was quantitative, using structured interviewer-administered questionnaires. Results: Two-third (66%) of the women in reproductive age still had unmet need, 71% were currently pregnant, and more than a third (36%) confirmed ever having a mistimed pregnancy. Fifty-three percent (53%) of the women confirmed never communicating with their partners on family planning issues, a little below half (45%) took their own health care decisions. Seventy nine percent (79%) ever received family planning services from a health professional. Factors related to unmet needs included mistimed pregnancy, level of education, preferred birth/pregnancy interval, communication between partners and the autonomy to spend self-earnings. Conclusion: Considering that high rates of unmet need results in mistimed pregnancy, improved policies around the influence of unmet need on mistimed pregnancies are needed.
基金supported by the National Natural Science Foundation of China(with Granted Number 72271239,grant recipient P.J.)Research on the Design Method of Reliability Qualification Test for Complex Equipment Based on Multi-Source Information Fusion.https://www.nsfc.gov.cn/.
文摘The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the high cost and long duration of operational tests,it is essential to plan the test in advance.To solve the problem of planning UAV swarm operational test,this study considers the multi-stage feature of a UAV swarm mission,composed of launch,flight and combat stages,and proposes a method to find test plans that can maximize mission reliability.Therefore,a multi-stage mission reliability model for a UAV swarm is proposed to ensure successful implementation of the mission.A multi-objective integer optimization method that considers both mission reliability and cost is then formulated to obtain the optimal test plans.This study first constructs a mission reliability model for the UAV swarm in the combat stage.Then,the launch stage and flight stage are integrated to develop a complete PMS(Phased Mission Systems)reliability model.Finally,the Binary Decision Diagrams(BDD)and Multi Objective Quantum Particle Swarm Optimization(MOQPSO)methods are proposed to solve the model.The optimal plans considering both reliability and cost are obtained.The proposed model supports the planning of UAV swarm operational tests and represents a meaningful exploration of UAV swarm test planning.
基金supported by the National Natural Science Foundation of China under Grant No.62001199Fujian Province Nature Science Foundation under Grant No.2023J01925.
文摘In the domain of autonomous industrial manipulators,precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance,such as handling,heat sealing,and stacking.While Multi-Degree-of-Freedom(MDOF)manipulators offer kinematic redundancy,aiding in the derivation of optimal inverse kinematic solutions to meet position and posture requisites,their path planning entails intricate multiobjective optimization,encompassing path,posture,and joint motion optimization.Achieving satisfactory results in practical scenarios remains challenging.In response,this study introduces a novel Reverse Path Planning(RPP)methodology tailored for industrial manipulators.The approach commences by conceptualizing the manipulator’s end-effector as an agent within a reinforcement learning(RL)framework,wherein the state space,action set,and reward function are precisely defined to expedite the search for an initial collision-free path.To enhance convergence speed,the Q-learning algorithm in RL is augmented with Dyna-Q.Additionally,we formulate the cylindrical bounding box of the manipulator based on its Denavit-Hartenberg(DH)parameters and propose a swift collision detection technique.Furthermore,the motion performance of the end-effector is refined through a bidirectional search,and joint weighting coefficients are introduced to mitigate motion in high-power joints.The efficacy of the proposed RPP methodology is rigorously examined through extensive simulations conducted on a six-degree-of-freedom(6-DOF)manipulator encountering two distinct obstacle configurations and target positions.Experimental results substantiate that the RPP method adeptly orchestrates the computation of the shortest collision-free path while adhering to specific posture constraints at the target point.Moreover,itminimizes both posture angle deviations and joint motion,showcasing its prowess in enhancing the operational performance of MDOF industrial manipulators.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFB4700402).
文摘Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of the neighborhood search strategy,the robots could hardly obtain the most optimal global path.A global path planning algorithm,denoted as EDG*,is proposed by expanding nodes using a well-designed expanding disconnected graph operator(EDG)in this paper.Firstly,all obstacles are marked and their corners are located through the map pre-processing.Then,the EDG operator is designed to find points in non-obstruction areas to complete the rapid expansion of disconnected nodes.Finally,the EDG*heuristic iterative algorithm is proposed.It selects the candidate node through a specific valuation function and realizes the node expansion while avoiding collision with a minimum offset.Path planning experiments were conducted in a typical indoor environment and on the public dataset CSM.The result shows that the proposed EDG*reduced the planning time by more than 90%and total length of paths reduced by more than 4.6%.Compared to A*,Dijkstra and JPS,EDG*does not show an exponential explosion effect in map size.The EDG*showed better performance in terms of path smoothness,and collision avoidance.This shows that the EDG*algorithm proposed in this paper can improve the efficiency of path planning and enhance path quality.