This pilot study examined the effectiveness and students’perceptions of a multimedia module on intermediate Chinese-as-a-Foreign-Language(CFL)learners’understanding and use of the“shì...de”construction.The mo...This pilot study examined the effectiveness and students’perceptions of a multimedia module on intermediate Chinese-as-a-Foreign-Language(CFL)learners’understanding and use of the“shì...de”construction.The module was designed based on the First Principles of Instruction(Morrill,2002)and the Cognitive Theory of Multimedia Learning(Mayer,2009;2014).It provided a systematic and comprehensive approach to teaching the“shì...de”construction,one of the most challenging grammar points in CFL.Twenty-two CFL learners participated in this mixed-methods study.Data were collected using pre-and post-tests,a survey,think-alouds,and semi-structured interviews.Findings show that after using the module,students’understanding and use of the construction significantly improved,except for their understanding of the second usage.The students enjoyed using the module and appreciated how it was designed,the way it was presented,and its availability.The reasons for the effectiveness of the module were analyzed and led to suggested improvements to the design of the module.The detailed description of the design process and the research result contribute to the knowledge of designing grammar teaching modules with multimedia for online,blended,and flipped learning.展开更多
Cochin Port is an all-weather port situated within a protected natural harbour,just 11 km away from mainland shipping route.Total draft of 15m-16m is available and it is a natural choice for setting up transhipment hu...Cochin Port is an all-weather port situated within a protected natural harbour,just 11 km away from mainland shipping route.Total draft of 15m-16m is available and it is a natural choice for setting up transhipment hub.The International Container Transhipment Terminal(ICTT)at Vallarpadam was developed by DP World and M/s Cochin Port Trust(CPT).As a part of this project,the new Rail connectivity from ICTT at Vallarpadam to Idappalli station is 8.60km,including the construction of 4.62 km elevated bridge was awarded to AFCONS by M/s Rail Vikas Nigam Limited(RVNL),in 2007 with a scheduled completion by 2009.This bridge is constructed for single railway track and piling was done for the provision of a second railway track in future.The 4.62 km long bridge was successfully completed and Trial Loco run was done in March 2010.This paper includes details of sub-surface profile,engineering properties of soils,details of construction of pile foundations and Challenges faced during construction.展开更多
In order to assess the environmental risks caused by carbon emissions from the construction industry in Hebei Province of China,an environmental risk assessment model based on forest carbon sink threshold was construc...In order to assess the environmental risks caused by carbon emissions from the construction industry in Hebei Province of China,an environmental risk assessment model based on forest carbon sink threshold was constructed to evaluate the carbon emission risks of the construction industry in Hebei Province,China from 2005 to 2020.The results are shown as follows:(1)The overall carbon emissions of the construction industry in Hebei Province of China showed an inverted"V"-shaped evolution trend during the past 16 years.Tangshan and Shijiazhuang maintained high carbon emissions,while Langfang,Hengshui and Baoding saw rapid increases in carbon emissions.(2)The environmental safety threshold of carbon emission from the construction industry in Hebei Province,China,has been continuously improved,and the provincial environmental safety threshold is between 9475080-23144760 tons;The environmental safety threshold was the highest in Baoding and Langfang,and the lowest in Xingtai.(3)In the past 16 years,the carbon emission risk of the construction industry in Hebei Province of China has been in a state of extremely serious risk,and the risk index generally presents an inverted"V"type trend.(4)The carbon emission risk of Hebei city in China presents a spatial pattern of"high in the south and low in the north",which goes through two stages:risk increase period and risk reduction period.展开更多
The brand construction of agricultural products is a necessary path for agricultural development and an effective way to enhance the added value and market competitiveness of agricultural products.How to do a good job...The brand construction of agricultural products is a necessary path for agricultural development and an effective way to enhance the added value and market competitiveness of agricultural products.How to do a good job in building agricultural product brands under the background of rural revitalization?This paper takes the honeysuckle industry in Mashan County,Nanning as a case study for comprehensive analysis,forming a driving force for the high-quality development of characteristic agricultural industries.展开更多
This study aims to determine the key and underlying Leadership and Top Management (LTM) factors that have a significant impact on sustaining the implementation of Total Quality Management (TQM) within the construction...This study aims to determine the key and underlying Leadership and Top Management (LTM) factors that have a significant impact on sustaining the implementation of Total Quality Management (TQM) within the construction industry in Ghana. The research methodology employed in this study was a quantitative technique. Questionnaires were distributed to 641 participants within construction industry in Ghana. Questionnaires retrieved for the analysis were 536. Three steps approached were used for the data analysis. These include Exploratory Factor Analysis (EFA), Confirmatory Factor Analysis (CFA), and Structural Equation Modeling (SEM) analysis. After conducting the EFA and CFA, SEM was also used to analyze the construct validity. The SEM analysis helps to determine four key indicator variables for the leadership and top management construct. These include Leadership/Top Management approach to employees’ management, Leadership/Top Management understanding of TQM, Leadership/Top Management empowerment of employees to resolve quality issues, and Leadership/Top Management endorsement of TQM. All the four indicator variables were found to be good of fit and closely associated with the dependent variable. The study adds to the body of knowledge by using EFA, CFA and SEM techniques to establish key leadership and top management factors affecting TQM implementation in Ghana’s construction industry. The findings in general suggested that leadership and top Management factors identified have a direct positive impact on sustaining TQM implementation in the Ghanaian construction industry. Consequently, the leadership and top management factors identified in this study can help improve TQM in the Ghanaian construction industry.展开更多
Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real...Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real-world monitoring,the process will use RTK-GNSS positional perception technology,by projecting the left side of the earth from Gauss-Krueger projection method,and then carry out the Cartesian conversion based on the characteristics of drawing;steering control system is the core of the electric drive unmanned module,on the basis of the analysis of the composition of the steering system of unmanned engineering vehicles,the steering system key components such as direction,torque sensor,drive motor and other models are established,the joint simulation model of unmanned engineering vehicles is established,the steering controller is designed using the PID method,the simulation results show that the control method can meet the construction path demand for automatic steering.The path planning will first formulate the construction area with preset values and realize the steering angle correction during driving by PID algorithm,and never realize the construction-based path planning,and the results show that the method can control the straight path within the error of 10 cm and the curve error within 20 cm.With the collaboration of various modules,the automatic construction simulation results of this robot show that the design path and control method is effective.展开更多
The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of it...The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost,triggering the development of various types of extraterrestrial construction materials.A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization.Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment.Mechanical,thermal and optical,and radiation-shielding properties are considered.The influencing factors and optimization methods for these properties are analyzed.From the perspective of material properties,the existing challenges lie in the comprehensive,long-term,and real characterization of regolith-based construction materials.Correspondingly,the suggested future directions include the application of high-throughput characterization methods,accelerated durability tests,and conducting extraterrestrial experiments.展开更多
Identifying workers’construction activities or behaviors can enable managers to better monitor labor efficiency and construction progress.However,current activity analysis methods for construction workers rely solely...Identifying workers’construction activities or behaviors can enable managers to better monitor labor efficiency and construction progress.However,current activity analysis methods for construction workers rely solely on manual observations and recordings,which consumes considerable time and has high labor costs.Researchers have focused on monitoring on-site construction activities of workers.However,when multiple workers are working together,current research cannot accu rately and automatically identify the construction activity.This research proposes a deep learning framework for the automated analysis of the construction activities of multiple workers.In this framework,multiple deep neural network models are designed and used to complete worker key point extraction,worker tracking,and worker construction activity analysis.The designed framework was tested at an actual construction site,and activity recognition for multiple workers was performed,indicating the feasibility of the framework for the automated monitoring of work efficiency.展开更多
Food security is a strategic priority for a country’s economic development.In China,high-standard farmland construction(HSFC)is an important initiative to stabilize grain production and increase grain production capa...Food security is a strategic priority for a country’s economic development.In China,high-standard farmland construction(HSFC)is an important initiative to stabilize grain production and increase grain production capacity.Based on panel data from 31 sample provinces,autonomous regions,and municipalities in China from 2005–2017,this study explored the impact of HSFC on grain yield using the difference-in-differences(DID)method.The results showed that HSFC significantly increased total grain production,which is robust to various checks.HSFC increased grain yield through three potential mechanisms.First,it could increase the grain replanting index.Second,it could effectively reduce yield loss due to droughts and floods.Last,HSFC could strengthen the cultivated land by renovating the low-and medium-yielding fields.Heterogeneity analysis found that the HSFC farmland showed a significant increase in grain yield only in the main grain-producing areas and balanced areas.In addition,HSFC significantly increased the yields of rice,wheat,and maize while leading to a reduction in soybean yields.The findings suggest the government should continue to promote HSFC,improve construction standards,and strictly control the“non-agriculturalization”and“non-coordination”of farmland to increase grain production further.At the same time,market mechanisms should be used to incentivize soybean farming,improve returns and stabilize soybean yields.展开更多
The continuous progress of urbanization has driven the continuous development and innovation of landscape planning and design.Focused on the important design method of modern construction art,this study analyzed its c...The continuous progress of urbanization has driven the continuous development and innovation of landscape planning and design.Focused on the important design method of modern construction art,this study analyzed its concepts and characteristics,and made deep exploration to its application in landscape planning and design.The results indicated that modern construction art had a significant impact on landscape spatial planning and layout,spatial design forms,and spatial ornaments.The use of modern construction art concepts could make landscape design more scientific,artistic,and humane,creating higher quality leisure and entertainment venues for audiences.展开更多
Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between mar...Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between marine clay and structural materials with different roughness was studied in this paper by using 3D optical scanning tests,a modified direct shear device and numerical simulation.Relationships between the surface roughness of structures,water content and interface friction angle were presented by model tests.The increase of water contents decreased the interface friction angles.For interfaces with different roughness,the interface friction angles will be smaller than that of the soil when the water content exceeds a certain value.The roughness of the interface and the water content of the soil are mutually coupled to influence the coefficient of friction(COF).This paper proposed a Finite Element Method(FEM)to simulate the interface direct shear tests of structures with different roughness.The surface models with different roughness are established based on the structure data obtained by 3D scanning.The Coupled Eulerian-Lagrangian(CEL)approach was employed to analyse soils sheared by irregular surfaces.The interface behavior for interfaces with different roughness under cyclic shear stresses was analyzed by FEM.展开更多
Introduction: Work-related accidents are frequent and serious in the construction sector. The aim of the study was to determine the frequency and factors associated with occupational accidents on the construction site...Introduction: Work-related accidents are frequent and serious in the construction sector. The aim of the study was to determine the frequency and factors associated with occupational accidents on the construction site of a referral hospital in Benin. Methods: A cross-sectional study was carried out. The sample size was calculated using the Schwartz form adjusted for the number of workers on site and was 129 workers. Random sampling was used. The dependent variable was work-related accidents. The other variables were socio-demographic and occupational characteristics. Data were collected through a questionnaire survey. Medians and proportions were calculated. An association was sought using Chi-square and Fisher tests with a threshold of p Results: A total of 132 workers were included. Their median age was 30 years with an ITQ of [27 - 38];men were the most represented 126 (95.45%) with a level of education higher than or equal to high school in 101 (76.52%) and in the majority with a permanent status 85 (64.39%). Seniority of more than 5 years was observed in 92 (69.7%). Workers working more than 8 hours of overtime per week numbered 57 (43.18%). Exposure to vibrating objects was 49 (37.12%). In terms of psychosocial constraints, 82.58% had high psychological demands;79.53% low decision-making latitude;50.76% low social support. The frequency of work-related accidents was 6.82%, and the only associated factor was the type of worker (p = 0.016). On the other hand, there were 10.2% accidents among workers handling vibrating objects versus 4.98% among those not using them. With regard to psychosocial constraints, the following frequencies were recorded respectively: 6.42% among those with high psychological demand versus 8.7% among those with low psychological demand;7.62% among those with low decision-making latitude versus 3.7% among those with high decision-making latitude;8.96% among those with low social support versus 4.62% among those with high support. Conclusion: Work-related accidents on construction sites must be avoided by all possible means including the management of psychosocial constraints.展开更多
Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the ar...Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the artificial land is essential,yet challenging.Here,we use an improved fiber-optic monitoring system for its subsurface multi-physical characterization.The system enables us to gather spatiotemporal distribution of various parameters,including strata deformation,temperature,and moisture.Yan’an New District was selected as a case study to conduct refined in-situ monitoring through a 77 m-deep borehole and a 30 m-long trench.Findings reveal that the ground settlement involves both the deformation of the filling loess and the underlying intact loess.Notably,the filling loess exhibits a stronger creep capability compared to underlying intact loess.The deformation along the profile is unevenly distributed,with a positive correlation with soil moisture.Water accumulation has been observed at the interface between the filling loess and the underlying intact loess,leading to a significant deformation.Moreover,the temperature and moisture in the filling loess have reached a new equilibrium state,with their depths influenced by atmospheric conditions measuring at 31 m and 26 m,respectively.The refined investigation allows us to identify critical layers that matter the sustainable development of newly created urban areas,and provide improved insights into the evolution mechanisms of land creation.展开更多
Being different from testing for popular GUI software, the “instruction-category” approach is proposed for testing embedded system. This approach is constructed by three steps including refining items, drawing instr...Being different from testing for popular GUI software, the “instruction-category” approach is proposed for testing embedded system. This approach is constructed by three steps including refining items, drawing instruction-brief and instruction-category, and constructing test suite. Consequently, this approach is adopted to test oven embedded system, and detail process is deeply discussed. As a result, the factual result indicates that the “instruction-category” approach can be effectively applied in embedded system testing as a black-box method for conformity testing.展开更多
In the context of China’s economic development and population aging,the innovation and exploration of the old-age care model has emerged as a new community transformation and development direction.Given the differing...In the context of China’s economic development and population aging,the innovation and exploration of the old-age care model has emerged as a new community transformation and development direction.Given the differing needs and characteristics of individuals across the lifespan,it is evident that a design approach that incorporates mixed-age integration and mutual-help communities is a viable strategy for enhancing intergenerational exchanges.This entails the creation of a diverse and open community that is conducive to habitation for individuals of all ages,encompassing the full spectrum of needs,from those of young children to the elderly.Such a community must be designed and constructed with the population in mind,from the initial planning and design stages to the operational phase.This encompasses a comprehensive range of services,including food,clothing,housing,transportation,and medical care and recreation.展开更多
Taking the changes of construction land in Wan’an County over the years as the research object,the quantity and spatial characteristics of construction land in Wan’an County were analyzed,and the overall situation a...Taking the changes of construction land in Wan’an County over the years as the research object,the quantity and spatial characteristics of construction land in Wan’an County were analyzed,and the overall situation and regional differences of construction land utilization in Wan’an County were revealed.From the aspects of main influencing factors such as land use structure,land use intensity,land input intensity and output benefit,an evaluation indicator system was established to evaluate the economical and intensive use level of construction land in Wan’an County.The results show that the score of the economical and intensive use level of construction land in Wan’an County was 56.92,which was the lowest among all the districts and counties in Ji’an City.Based on the evaluation results,the corresponding economizing and intensive strategies were put forward,and the safeguard measures for its implementation were explored.The purpose is to provide some support for the preparation of territorial spatial planning,the delineation of urban development boundaries,and the potential exploitation of construction land stock,hoping to improve the utilization efficiency and benefit of construction land in Wan’an County,and promote the economic growth of Wan’an County to the stage of high-quality development.展开更多
Lunar habitat construction is crucial for successful lunar exploration missions.Due to the limitations of transportation conditions,extensive global research has been conducted on lunar in situ material processing tec...Lunar habitat construction is crucial for successful lunar exploration missions.Due to the limitations of transportation conditions,extensive global research has been conducted on lunar in situ material processing techniques in recent years.The aim of this paper is to provide a comprehensive review,precise classification,and quantitative evaluation of these approaches,focusing specifically on four main approaches:reaction solidification(RS),sintering/melting(SM),bonding solidification(BS),and confinement formation(CF).Eight key indicators have been identified for the construction of low-cost and highperformance systems to assess the feasibility of these methods:in situ material ratio,curing temperature,curing time,implementation conditions,compressive strength,tensile strength,curing dimensions,and environmental adaptability.The scoring thresholds are determined by comparing the construction requirements with the actual capabilities.Among the evaluated methods,regolith bagging has emerged as a promising option due to its high in situ material ratio,low time requirement,lack of hightemperature requirements,and minimal shortcomings,with only the compressive strength falling below the neutral score.The compressive strength still maintains a value of 2–3 MPa.The proposed construction scheme utilizing regolith bags offers numerous advantages,including rapid and large-scale construction,ensured tensile strength,and reduced reliance on equipment and energy.In this study,guidelines for evaluating regolith solidification techniques are provided,and directions for improvement are offered.The proposed lunar habitat design based on regolith bags is a practical reference for future research.展开更多
This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into f...This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile.展开更多
Green and low-carbon development of construction industry is one of the important ways to achieve the"dual carbon"goal in China.This study first measured the carbon emissions of the construction industry in ...Green and low-carbon development of construction industry is one of the important ways to achieve the"dual carbon"goal in China.This study first measured the carbon emissions of the construction industry in 30 provinces in China,and then used the Dagum Gini coefficient and its decomposition method to explore the regional differences and sources of carbon emissions of the construction industry in China.The results show that the carbon emissions of construction industry in China generally show an upward trend,and there are significant differences in carbon emissions of construction industry among provinces,and the main source of regional differences is inter-regional differences.However,the contribution rate of inter-regional differences showed a significant downward trend,while the contribution rate of hyperbolic density increased day by day,and the contribution rate of intra-regional differences increased slightly.The results of this study will provide a reference for China to formulate more reasonable carbon emission reduction targets and differentiation strategies for the construction industry.展开更多
With the development of the major country diplomacy with Chinese characteristics,diplomatic discourse,as an important part of building China’s international discourse power,has attracted much attention.Personificatio...With the development of the major country diplomacy with Chinese characteristics,diplomatic discourse,as an important part of building China’s international discourse power,has attracted much attention.Personification is a common means in diplomatic discourse.By giving anthropomorphic expressions to countries,regions,institutions and policies,the purpose of building national identity and establishing national image can be achieved.Based on conceptual metaphor theory and national identity theory,this paper focuses on personification in diplomatic discourse with a case study of the regular press conference of Ministry of Foreign Affairs.It is found that the spokesperson skillfully constructed China’s positive national identity,such as peace-loving,openness and inclusiveness by using a large number of body metaphor,kinship metaphor and role metaphor.展开更多
文摘This pilot study examined the effectiveness and students’perceptions of a multimedia module on intermediate Chinese-as-a-Foreign-Language(CFL)learners’understanding and use of the“shì...de”construction.The module was designed based on the First Principles of Instruction(Morrill,2002)and the Cognitive Theory of Multimedia Learning(Mayer,2009;2014).It provided a systematic and comprehensive approach to teaching the“shì...de”construction,one of the most challenging grammar points in CFL.Twenty-two CFL learners participated in this mixed-methods study.Data were collected using pre-and post-tests,a survey,think-alouds,and semi-structured interviews.Findings show that after using the module,students’understanding and use of the construction significantly improved,except for their understanding of the second usage.The students enjoyed using the module and appreciated how it was designed,the way it was presented,and its availability.The reasons for the effectiveness of the module were analyzed and led to suggested improvements to the design of the module.The detailed description of the design process and the research result contribute to the knowledge of designing grammar teaching modules with multimedia for online,blended,and flipped learning.
文摘Cochin Port is an all-weather port situated within a protected natural harbour,just 11 km away from mainland shipping route.Total draft of 15m-16m is available and it is a natural choice for setting up transhipment hub.The International Container Transhipment Terminal(ICTT)at Vallarpadam was developed by DP World and M/s Cochin Port Trust(CPT).As a part of this project,the new Rail connectivity from ICTT at Vallarpadam to Idappalli station is 8.60km,including the construction of 4.62 km elevated bridge was awarded to AFCONS by M/s Rail Vikas Nigam Limited(RVNL),in 2007 with a scheduled completion by 2009.This bridge is constructed for single railway track and piling was done for the provision of a second railway track in future.The 4.62 km long bridge was successfully completed and Trial Loco run was done in March 2010.This paper includes details of sub-surface profile,engineering properties of soils,details of construction of pile foundations and Challenges faced during construction.
基金supported by the Hebei Social Science Foundation Project(Grant No.HB20YJ018)2023 Hebei Province Social Science Development Research Project(Grant No.20230103005)Education Department of Hebei Province Graduate Student Innovation Ability Training Funding Project(Grant No.CXZZSS2023130).
文摘In order to assess the environmental risks caused by carbon emissions from the construction industry in Hebei Province of China,an environmental risk assessment model based on forest carbon sink threshold was constructed to evaluate the carbon emission risks of the construction industry in Hebei Province,China from 2005 to 2020.The results are shown as follows:(1)The overall carbon emissions of the construction industry in Hebei Province of China showed an inverted"V"-shaped evolution trend during the past 16 years.Tangshan and Shijiazhuang maintained high carbon emissions,while Langfang,Hengshui and Baoding saw rapid increases in carbon emissions.(2)The environmental safety threshold of carbon emission from the construction industry in Hebei Province,China,has been continuously improved,and the provincial environmental safety threshold is between 9475080-23144760 tons;The environmental safety threshold was the highest in Baoding and Langfang,and the lowest in Xingtai.(3)In the past 16 years,the carbon emission risk of the construction industry in Hebei Province of China has been in a state of extremely serious risk,and the risk index generally presents an inverted"V"type trend.(4)The carbon emission risk of Hebei city in China presents a spatial pattern of"high in the south and low in the north",which goes through two stages:risk increase period and risk reduction period.
文摘The brand construction of agricultural products is a necessary path for agricultural development and an effective way to enhance the added value and market competitiveness of agricultural products.How to do a good job in building agricultural product brands under the background of rural revitalization?This paper takes the honeysuckle industry in Mashan County,Nanning as a case study for comprehensive analysis,forming a driving force for the high-quality development of characteristic agricultural industries.
文摘This study aims to determine the key and underlying Leadership and Top Management (LTM) factors that have a significant impact on sustaining the implementation of Total Quality Management (TQM) within the construction industry in Ghana. The research methodology employed in this study was a quantitative technique. Questionnaires were distributed to 641 participants within construction industry in Ghana. Questionnaires retrieved for the analysis were 536. Three steps approached were used for the data analysis. These include Exploratory Factor Analysis (EFA), Confirmatory Factor Analysis (CFA), and Structural Equation Modeling (SEM) analysis. After conducting the EFA and CFA, SEM was also used to analyze the construct validity. The SEM analysis helps to determine four key indicator variables for the leadership and top management construct. These include Leadership/Top Management approach to employees’ management, Leadership/Top Management understanding of TQM, Leadership/Top Management empowerment of employees to resolve quality issues, and Leadership/Top Management endorsement of TQM. All the four indicator variables were found to be good of fit and closely associated with the dependent variable. The study adds to the body of knowledge by using EFA, CFA and SEM techniques to establish key leadership and top management factors affecting TQM implementation in Ghana’s construction industry. The findings in general suggested that leadership and top Management factors identified have a direct positive impact on sustaining TQM implementation in the Ghanaian construction industry. Consequently, the leadership and top management factors identified in this study can help improve TQM in the Ghanaian construction industry.
文摘Automatic control technology is the basis of road robot improvement,according to the characteristics of construction equipment and functions,the research will be input type perception from positioning acquisition,real-world monitoring,the process will use RTK-GNSS positional perception technology,by projecting the left side of the earth from Gauss-Krueger projection method,and then carry out the Cartesian conversion based on the characteristics of drawing;steering control system is the core of the electric drive unmanned module,on the basis of the analysis of the composition of the steering system of unmanned engineering vehicles,the steering system key components such as direction,torque sensor,drive motor and other models are established,the joint simulation model of unmanned engineering vehicles is established,the steering controller is designed using the PID method,the simulation results show that the control method can meet the construction path demand for automatic steering.The path planning will first formulate the construction area with preset values and realize the steering angle correction during driving by PID algorithm,and never realize the construction-based path planning,and the results show that the method can control the straight path within the error of 10 cm and the curve error within 20 cm.With the collaboration of various modules,the automatic construction simulation results of this robot show that the design path and control method is effective.
基金supported by the National Key Research and Development Program of China(2023YFB3711300 and 2021YFF0500300)the Strategic Research and Consulting Project of the Chinese Academy of Engineering(2023-XZ-90 and 2023-JB-09-10)the National Key Research and Development Program of China(2021YFF0500300).
文摘The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost,triggering the development of various types of extraterrestrial construction materials.A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization.Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment.Mechanical,thermal and optical,and radiation-shielding properties are considered.The influencing factors and optimization methods for these properties are analyzed.From the perspective of material properties,the existing challenges lie in the comprehensive,long-term,and real characterization of regolith-based construction materials.Correspondingly,the suggested future directions include the application of high-throughput characterization methods,accelerated durability tests,and conducting extraterrestrial experiments.
基金supported by the National Natural Science Foundation of China(52130801,U20A20312,52178271,and 52077213)the National Key Research and Development Program of China(2021YFF0500903)。
文摘Identifying workers’construction activities or behaviors can enable managers to better monitor labor efficiency and construction progress.However,current activity analysis methods for construction workers rely solely on manual observations and recordings,which consumes considerable time and has high labor costs.Researchers have focused on monitoring on-site construction activities of workers.However,when multiple workers are working together,current research cannot accu rately and automatically identify the construction activity.This research proposes a deep learning framework for the automated analysis of the construction activities of multiple workers.In this framework,multiple deep neural network models are designed and used to complete worker key point extraction,worker tracking,and worker construction activity analysis.The designed framework was tested at an actual construction site,and activity recognition for multiple workers was performed,indicating the feasibility of the framework for the automated monitoring of work efficiency.
基金supported by the National Natural Science Foundation of China(41871184)the National Social Science Fund of China(21ZDA056)the Scientific and Technological Innovation Project of the Chinese Academy of Agricultural Sciences(10-IAED-ZT-01-2023and 10-IAED-RC-07-2023)。
文摘Food security is a strategic priority for a country’s economic development.In China,high-standard farmland construction(HSFC)is an important initiative to stabilize grain production and increase grain production capacity.Based on panel data from 31 sample provinces,autonomous regions,and municipalities in China from 2005–2017,this study explored the impact of HSFC on grain yield using the difference-in-differences(DID)method.The results showed that HSFC significantly increased total grain production,which is robust to various checks.HSFC increased grain yield through three potential mechanisms.First,it could increase the grain replanting index.Second,it could effectively reduce yield loss due to droughts and floods.Last,HSFC could strengthen the cultivated land by renovating the low-and medium-yielding fields.Heterogeneity analysis found that the HSFC farmland showed a significant increase in grain yield only in the main grain-producing areas and balanced areas.In addition,HSFC significantly increased the yields of rice,wheat,and maize while leading to a reduction in soybean yields.The findings suggest the government should continue to promote HSFC,improve construction standards,and strictly control the“non-agriculturalization”and“non-coordination”of farmland to increase grain production further.At the same time,market mechanisms should be used to incentivize soybean farming,improve returns and stabilize soybean yields.
基金Sponsored by Germplasm Collection and Conservation Project for the Forest and Grass Germplasm Resources in Anhui Province in 2024(hxkt2024111)Science and Technology Plan Project of Huangshan(2022KN-02)+1 种基金Humanities and Social Sciences Research Project of Anhui Higher Education Institutions(SKHS2019B07)Key School-level Project of Huangshan University(2022xkjzd004).
文摘The continuous progress of urbanization has driven the continuous development and innovation of landscape planning and design.Focused on the important design method of modern construction art,this study analyzed its concepts and characteristics,and made deep exploration to its application in landscape planning and design.The results indicated that modern construction art had a significant impact on landscape spatial planning and layout,spatial design forms,and spatial ornaments.The use of modern construction art concepts could make landscape design more scientific,artistic,and humane,creating higher quality leisure and entertainment venues for audiences.
基金supported by a grant from the National Natural Science Foundations of China(No.52171282)supported by Taishan Scholars Program of Shandong Province,China(No.tsqn202306098)the Shandong Provincial Key Research and Development Plan,China(No.2021ZLGX04).
文摘Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between marine clay and structural materials with different roughness was studied in this paper by using 3D optical scanning tests,a modified direct shear device and numerical simulation.Relationships between the surface roughness of structures,water content and interface friction angle were presented by model tests.The increase of water contents decreased the interface friction angles.For interfaces with different roughness,the interface friction angles will be smaller than that of the soil when the water content exceeds a certain value.The roughness of the interface and the water content of the soil are mutually coupled to influence the coefficient of friction(COF).This paper proposed a Finite Element Method(FEM)to simulate the interface direct shear tests of structures with different roughness.The surface models with different roughness are established based on the structure data obtained by 3D scanning.The Coupled Eulerian-Lagrangian(CEL)approach was employed to analyse soils sheared by irregular surfaces.The interface behavior for interfaces with different roughness under cyclic shear stresses was analyzed by FEM.
文摘Introduction: Work-related accidents are frequent and serious in the construction sector. The aim of the study was to determine the frequency and factors associated with occupational accidents on the construction site of a referral hospital in Benin. Methods: A cross-sectional study was carried out. The sample size was calculated using the Schwartz form adjusted for the number of workers on site and was 129 workers. Random sampling was used. The dependent variable was work-related accidents. The other variables were socio-demographic and occupational characteristics. Data were collected through a questionnaire survey. Medians and proportions were calculated. An association was sought using Chi-square and Fisher tests with a threshold of p Results: A total of 132 workers were included. Their median age was 30 years with an ITQ of [27 - 38];men were the most represented 126 (95.45%) with a level of education higher than or equal to high school in 101 (76.52%) and in the majority with a permanent status 85 (64.39%). Seniority of more than 5 years was observed in 92 (69.7%). Workers working more than 8 hours of overtime per week numbered 57 (43.18%). Exposure to vibrating objects was 49 (37.12%). In terms of psychosocial constraints, 82.58% had high psychological demands;79.53% low decision-making latitude;50.76% low social support. The frequency of work-related accidents was 6.82%, and the only associated factor was the type of worker (p = 0.016). On the other hand, there were 10.2% accidents among workers handling vibrating objects versus 4.98% among those not using them. With regard to psychosocial constraints, the following frequencies were recorded respectively: 6.42% among those with high psychological demand versus 8.7% among those with low psychological demand;7.62% among those with low decision-making latitude versus 3.7% among those with high decision-making latitude;8.96% among those with low social support versus 4.62% among those with high support. Conclusion: Work-related accidents on construction sites must be avoided by all possible means including the management of psychosocial constraints.
基金supported by National Natural Science Foundation of China(Grant Nos.4203070 and 41977217)the Key Research&Development Program of Shaanxi Province(Grant No.2020ZDLSF06-03).
文摘Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the artificial land is essential,yet challenging.Here,we use an improved fiber-optic monitoring system for its subsurface multi-physical characterization.The system enables us to gather spatiotemporal distribution of various parameters,including strata deformation,temperature,and moisture.Yan’an New District was selected as a case study to conduct refined in-situ monitoring through a 77 m-deep borehole and a 30 m-long trench.Findings reveal that the ground settlement involves both the deformation of the filling loess and the underlying intact loess.Notably,the filling loess exhibits a stronger creep capability compared to underlying intact loess.The deformation along the profile is unevenly distributed,with a positive correlation with soil moisture.Water accumulation has been observed at the interface between the filling loess and the underlying intact loess,leading to a significant deformation.Moreover,the temperature and moisture in the filling loess have reached a new equilibrium state,with their depths influenced by atmospheric conditions measuring at 31 m and 26 m,respectively.The refined investigation allows us to identify critical layers that matter the sustainable development of newly created urban areas,and provide improved insights into the evolution mechanisms of land creation.
文摘Being different from testing for popular GUI software, the “instruction-category” approach is proposed for testing embedded system. This approach is constructed by three steps including refining items, drawing instruction-brief and instruction-category, and constructing test suite. Consequently, this approach is adopted to test oven embedded system, and detail process is deeply discussed. As a result, the factual result indicates that the “instruction-category” approach can be effectively applied in embedded system testing as a black-box method for conformity testing.
文摘In the context of China’s economic development and population aging,the innovation and exploration of the old-age care model has emerged as a new community transformation and development direction.Given the differing needs and characteristics of individuals across the lifespan,it is evident that a design approach that incorporates mixed-age integration and mutual-help communities is a viable strategy for enhancing intergenerational exchanges.This entails the creation of a diverse and open community that is conducive to habitation for individuals of all ages,encompassing the full spectrum of needs,from those of young children to the elderly.Such a community must be designed and constructed with the population in mind,from the initial planning and design stages to the operational phase.This encompasses a comprehensive range of services,including food,clothing,housing,transportation,and medical care and recreation.
文摘Taking the changes of construction land in Wan’an County over the years as the research object,the quantity and spatial characteristics of construction land in Wan’an County were analyzed,and the overall situation and regional differences of construction land utilization in Wan’an County were revealed.From the aspects of main influencing factors such as land use structure,land use intensity,land input intensity and output benefit,an evaluation indicator system was established to evaluate the economical and intensive use level of construction land in Wan’an County.The results show that the score of the economical and intensive use level of construction land in Wan’an County was 56.92,which was the lowest among all the districts and counties in Ji’an City.Based on the evaluation results,the corresponding economizing and intensive strategies were put forward,and the safeguard measures for its implementation were explored.The purpose is to provide some support for the preparation of territorial spatial planning,the delineation of urban development boundaries,and the potential exploitation of construction land stock,hoping to improve the utilization efficiency and benefit of construction land in Wan’an County,and promote the economic growth of Wan’an County to the stage of high-quality development.
基金supported by the National Natural Science Foundation of China(42241109)the Guoqiang Institute,Tsinghua University(2021GQG1001)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘Lunar habitat construction is crucial for successful lunar exploration missions.Due to the limitations of transportation conditions,extensive global research has been conducted on lunar in situ material processing techniques in recent years.The aim of this paper is to provide a comprehensive review,precise classification,and quantitative evaluation of these approaches,focusing specifically on four main approaches:reaction solidification(RS),sintering/melting(SM),bonding solidification(BS),and confinement formation(CF).Eight key indicators have been identified for the construction of low-cost and highperformance systems to assess the feasibility of these methods:in situ material ratio,curing temperature,curing time,implementation conditions,compressive strength,tensile strength,curing dimensions,and environmental adaptability.The scoring thresholds are determined by comparing the construction requirements with the actual capabilities.Among the evaluated methods,regolith bagging has emerged as a promising option due to its high in situ material ratio,low time requirement,lack of hightemperature requirements,and minimal shortcomings,with only the compressive strength falling below the neutral score.The compressive strength still maintains a value of 2–3 MPa.The proposed construction scheme utilizing regolith bags offers numerous advantages,including rapid and large-scale construction,ensured tensile strength,and reduced reliance on equipment and energy.In this study,guidelines for evaluating regolith solidification techniques are provided,and directions for improvement are offered.The proposed lunar habitat design based on regolith bags is a practical reference for future research.
基金National Natural Science Foundation of China under Grand No.51808190the Central Government Guides Local Science and Technology Development Fund Projects under Grand No.XZ202301YD0019C+2 种基金the Foundation of Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University)Ministry of Education under Grand No.2022P04the Central University Basic Research Fund of China under Grand No.B220202017。
文摘This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile.
基金Supported by School-level Natural Science Project of Jiangxi University of Technology(232ZRYB02).
文摘Green and low-carbon development of construction industry is one of the important ways to achieve the"dual carbon"goal in China.This study first measured the carbon emissions of the construction industry in 30 provinces in China,and then used the Dagum Gini coefficient and its decomposition method to explore the regional differences and sources of carbon emissions of the construction industry in China.The results show that the carbon emissions of construction industry in China generally show an upward trend,and there are significant differences in carbon emissions of construction industry among provinces,and the main source of regional differences is inter-regional differences.However,the contribution rate of inter-regional differences showed a significant downward trend,while the contribution rate of hyperbolic density increased day by day,and the contribution rate of intra-regional differences increased slightly.The results of this study will provide a reference for China to formulate more reasonable carbon emission reduction targets and differentiation strategies for the construction industry.
文摘With the development of the major country diplomacy with Chinese characteristics,diplomatic discourse,as an important part of building China’s international discourse power,has attracted much attention.Personification is a common means in diplomatic discourse.By giving anthropomorphic expressions to countries,regions,institutions and policies,the purpose of building national identity and establishing national image can be achieved.Based on conceptual metaphor theory and national identity theory,this paper focuses on personification in diplomatic discourse with a case study of the regular press conference of Ministry of Foreign Affairs.It is found that the spokesperson skillfully constructed China’s positive national identity,such as peace-loving,openness and inclusiveness by using a large number of body metaphor,kinship metaphor and role metaphor.