Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwate...Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwater reservoirs in the Lingshui Sag still have more fabulous oil and gas exploration potential.Based on drilling data and three-dimensional(3D)seismic data,this paper uses seismic facies analysis,seismic attribute analysis,and coherence slice analysis to identify the types of submarine fans(lobe-shaped and band-shaped submarine fans)that developed in the Lingshui Sag during the Middle Miocene,clarify the source-to-sink system of the submarine fans and discuss the genesis mechanism of the submarine fans.The results show that:(1)the deepwater source-to-sink system of the Lingshui Sag in the Middle Miocene mainly consisted of a“delta(sediment supply)-submarine canyon(sediment transport channel)-submarine fan(deepwater sediment sink)”association;(2)the main factor controlling the formation of the submarine fans developed in the Lingshui Sag was on the relative sea level decline;and(3)the bottom current reworked the lobe-shaped submarine fan that developed in the northern Lingshui Sag and formed the band-shaped submarine fan with a greater sand thickness.This paper aims to provide practical geological knowledge for subsequent petroleum exploration and development in the deepwater area of the Qiongdongnan Basin through a detailed analysis of the Middle Miocene submarine fan sedimentary system developed in the Lingshui Sag.展开更多
The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high...The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.展开更多
The surface uplift of the Tibetan Plateau(TP)and its geomorphology evolution has triggered aridification of Asia's interior and drainage development at the eastern margin of the plateau.However,how the pre-Cenozoi...The surface uplift of the Tibetan Plateau(TP)and its geomorphology evolution has triggered aridification of Asia's interior and drainage development at the eastern margin of the plateau.However,how the pre-Cenozoic early growth histories of the TP impact the drainage system and climate is poorly constrained.The Late Mesozoic Lacustrine evaporite-bearing basins on the eastern margin of the TP record significant information on the uplift of the source terranes,source-to-sink system development and climate change.In this study,we presented detrital zircon U-Pb ages from the Upper Cretaceous Yunlong Formation in the Lanping Basin,as well as Hf isotopic,petrographic,direct statistical,and multidimensional scaling analyses,and use them to characterize the provenance and reconstruct the drainage system.All of the samples have five major age peaks at 200-290 Ma,400-490 Ma,750-1000 Ma,1750-1950 Ma,and 2400-2600 Ma with mostly negativeε_(Hf)(t)values(81%).We infer the sediments are primarily derived from recycled sediments of the Songpan-Garze terrane,and partly from the Sichuan Basin and the Southern Qiangtang terrane,as well as the exposed magmatic rocks of the Yidun Arc and SongpanGarze terrane.The provenance features of the contemporaneous sediments from the Sichuan,Xichang,Chuxiong,and Simao basins indicate a complex hierarchical drainage pattern on the eastern margin of the TP during the Late Cretaceous.The hierarchical drainage system exhibits a complete gradational cycle of lake-basin types from overfilled freshwater Sichuan Basin through balanced fill saline Xichang Basin and underfilled hypersaline Chuxiong,Lanping,Simao,and Khorat Plateau basins from proximal to distal.The early growth of the TP primarily controlled the drainage and lake-basin evolution by not only causing the uplift and exhumation of the source areas and providing large amounts of clastic material to the proximal sub-drainage areas but also intensifying the aridity and deposition of evaporites.展开更多
Nitrogen(N)is an essential plant growth nutrient whose coordinated distribution from source to sink organs is crucial for seed development and overall crop yield.We compared high and low N use efficiency(NUE)Brassica ...Nitrogen(N)is an essential plant growth nutrient whose coordinated distribution from source to sink organs is crucial for seed development and overall crop yield.We compared high and low N use efficiency(NUE)Brassica napus(rapeseed)genotypes.Metabonomics and transcriptomics revealed that leaf senescence induced by N deficiency promoted amino acid allocation from older to younger leaves in the high-NUE genotype at the vegetative growth stage.Efficient source to sink remobilization of amino acids elevated the numbers of branches and pods per plant under a N-deficiency treatment during the reproductive stage.A15N tracer experiment confirmed that more amino acids were partitioned into seeds from the silique wall during the pod stage in the high-NUE genotype,owing mainly to variation in genes involved in organic N transport and metabolism.We suggest that the greater amino acid source-to-sink allocation efficiency during various growth stages in the high-NUE genotype resulted in higher yield and NUE under N deficiency.These findings support the hypothesis that strong amino acid remobilization in rapeseed leads to high yield,NUE,and harvest index.展开更多
There are many large-scale Cenozoic sedimentary basins with plentiful river deltas,deep-water fans and carbonate platforms in the southern South China Sea.The Crocker Fan was deposited as a typical submarine fan durin...There are many large-scale Cenozoic sedimentary basins with plentiful river deltas,deep-water fans and carbonate platforms in the southern South China Sea.The Crocker Fan was deposited as a typical submarine fan during the late Eocene–early Miocene,and stretches extensively across the entire Sarawak–Sabah of the northern Borneo area.However,systematic analyses are still lacking regarding its sediment composition and potential source suppliers.No consensus has been reached yet on the provenance evolution and sedimentary infilling processes,which seriously impeded the oil-and-gas exploration undertakings.By combining with sedimentaryfacies identification,heavy mineral assemblages,elemental geochemistry and detrital zircon U-Pb dating,this paper aims to generalize an integrated analysis on the potential provenance terranes and restore source-to-sink pathways of the Crocker Fan.In general,the Crocker Fan was initially formed over the Cretaceous–lower/middle Eocene Rajang Group by an angular Rajang unconformity.The continual southward subduction of the protoSouth China Sea resulted in magmatic activities and subsequent regional deformation and thrusting along the Lupar Line in the northern Borneo.The lowermost Crocker sequence is featured by a thick conglomerate layer sourced from in-situ or adjacent paleo-uplifts.From the late Eocene to the early Miocene,the Crocker Fan was constantly delivered with voluminous detritus from the Malay Peninsula of the western Sundaland.The Zengmu Basin was widely deposited with delta plain and neritic facies sediments,while the Brunei-Sabah Basin,to the farther east,was ubiquitously characterized by turbiditic sequences.The Crocker Fan successions are overall thick layers of modest-grained sandstones,which formed high-quality reservoirs in the southern South China Sea region.展开更多
Located at the end of the northern Manila Trench,the Hengchun Peninsula is the latest exposed part of Taiwan Island,and preserves a complete sequence of accretionary deep-sea turbidite sandstones.Combined with extensi...Located at the end of the northern Manila Trench,the Hengchun Peninsula is the latest exposed part of Taiwan Island,and preserves a complete sequence of accretionary deep-sea turbidite sandstones.Combined with extensive field observations,a’source-to-sink’approach was employed to systematically analyze the formation and evolutionary process of the accretionary prism turbidites on the Hengchun Peninsula.Lying at the base of the Hengchun turbidites are abundant mafic normal oceanic crust gravels with a certain degree of roundness.The gravels with U-Pb ages ranging from 25.4 to23.6 Ma are underlain by hundreds-of-meters thickness of younger deep-sea sandstone turbidites with interbedded gravels.This indicates that large amounts of terrigenous materials from both the’Kontum-Ying-Qiong’River of Indochina and the Pearl River of South China were transported into the deep-water areas of the northern South China Sea during the late Miocene and further eastward in the form of turbidity currents.The turbidity flow drastically eroded and snatched mafic materials from the normal South China Sea oceanic crust along the way,and subsequently unloaded large bodies of basic gravel-bearing sandstones to form turbidites near the northern Manila Trench.With the Philippine Sea Plate drifting clockwise to the northwest,these turbidite successions eventually migrated and,since the Middle Pleistocene,were exposed as an accretionary prism on the Hengchun Peninsula.展开更多
As a result of recycling, the mineralogical and chemical compositions of riverine sediments may reflect the combined effects of the present-day weathering regime as well as previous weathering and diagenetic alteratio...As a result of recycling, the mineralogical and chemical compositions of riverine sediments may reflect the combined effects of the present-day weathering regime as well as previous weathering and diagenetic alteration history. River sediments can be interpreted as a mixture of non-weathered bedrock—of igneous, metamorphic, or sedimentary origin—and solids formed by the modern weathering system. The correlation between the weathering proxies chemical index of alteration and weathering index of Parker offers an approach to distinguish fine suspended particles, coarse bedload sediments, and recycled sediments under the influence of quartz dilution. Recycling of cation-depleted source rocks formed during past geological weathering episodes may have great impacts on the weathering indices of sediments from the Changjiang(Yangzte) and Zhuoshui Rivers. Special caution is required when using chemical weathering indices to investigate the intensity of chemical weathering registered in fluvial sediments. To minimize the effect of hydrodynamic sorting or sediment recycling, we suggest that the fine sediments(e.g.suspended particles and ﹤2 lm fractions of bedload sediments) in rivers better reflect the average of weatheredcrust in catchments and the terrigenous end-member in marginal seas.展开更多
Palaeodrainage basin,as an important component of the source-to-sink system,contains critical information on provenance and palaeoenvironment.Previous studies indicate that the scaling relationships of source-to-sink ...Palaeodrainage basin,as an important component of the source-to-sink system,contains critical information on provenance and palaeoenvironment.Previous studies indicate that the scaling relationships of source-to-sink system components generally follow power laws,and channel-belt thickness represents a reliable first-order proxy for the drainage area.In this study,a database of borehole cores and geophysical well logs of the Jurassic coal measures from Saishiteng area in the northern Qaidam Basin was used to reconstruct the palaeogeography,and to identify single-story channel-belts.Three palaeochannels,namely,River A,River B and River C,were identified which were persistent throughout the Dameigou and Shimengou Formations during the Middle Jurassic.The mean channel-belt thicknesses of River A,River B and River C in the Dameigou Formation were 9.8 m,8.9 m and 7.9 m,respectively,and those in the Shimengou Formation were 7.4 m,6.2 m and 5.4 m,respectively.We estimate the drainage area of three major rivers by using scaling relationships between drainage area and channel-belt thickness.The drainage areas of River A,River B and River C in the Dameigou Formation were 63.0×10~3 km^2,50.1×10~3 km^2 and 37.7×10~3 km^2,respectively,and those in the Shimengou Formation were 32.3×10~3 km^2,21.2×10~3 km^2 and15.3×10~3 km^2,respectively.The drainage basin lengths of River A,River B and River C in the Dameigou Formation were 300.4 km,239 km and 180.2 km,respectively,and those in the Shimengou Formation were 154.3 km,101.3 km and 73.1 km,respectively.For both the Dameigou and Shimengou Formations,River A showed the largest scale,followed by River B and River C succeedingly,which was mainly determined by the stretch direction of provenance in the southern Qilian Mountains.The variations of channel-belt thickness,drainage area and drainage basin length between Dameigou and Shimengou Formations are the response of source-to-sink system to the transformation from extension to compression depression during the Middle Jurassic in the northern Qaidam Basin.展开更多
Investigating the formation and evolution of coarse-grained deposits in modern lakes and the relevant controlling conditions is indispensable to the prediction of reservoir sandbodies, disaster prediction,and limnolog...Investigating the formation and evolution of coarse-grained deposits in modern lakes and the relevant controlling conditions is indispensable to the prediction of reservoir sandbodies, disaster prediction,and limnological research. The source-to-sink system of coarse-grained deposits in Lake Chenghai, a deep,scarped Late Quaternary lake, was investigated in this study based on 62 outcrops, Advanced Land Observing Satellite(ALOS) digital elevation model(DEM) data, and regional geological survey data. The findings include the following:(1) the source areas of coarse-grained deposits in Lake Chenghai were lithologically classified into carbonate source areas, basaltic source areas and siliciclastic source areas, and were geomorphically categorized as scarp type or confluence type. Subaqueous colluvial aprons have formed downstream of the carbonate source areas and scarp-type basaltic source areas, while Gilbert-type deltas have formed downstream of siliciclastic source areas and confluence-type basaltic source areas.(2) The formation and evolution of coarse-grained deposits are controlled by the sediment flux that evolves in synchrony with the geomorphic evolution of the source areas and the sink regimes. Scarps represent the initial landform of the source areas.Source material rolls off or slides down scarps or forms small-scale debris flows before entering the lake. The source material initially formed subaqueous colluvial apron(synonymous with subaqueous fans) where sufficient space was present to accommodate sediments and the basement angle exceeded than the natural angle of repose. As weathering and denudation have progressed, the initial scarps have transformed into confluencetype slopes, and the source material has formed medium-and large-scale debris flows that have entered the lake, resulting in an increase in sediment flux. Consequently, the subaqueous colluvial aprons have rapidly grown and developed subaerial deposits, which have evolved into larger-scale Gilbert-type deltas that overlie the initial aprons.(3) The morphology and distribution of coarse-grained deposits vary in response to differences in quantity and composition of materials from different source areas, which resulting from different rates of weathering and denudation and different sediment input regimes. Firstly, the size and surface slope angle of a subaqueous colluvial apron from a carbonate source are smaller than those of a subaqueous colluvial apron of basaltic origin. Secondly, a Gilbert-type delta from a basaltic source features a greater slope angle and a thicker topset than does a Gilbert-type delta of siliciclastic origin, and the latter exhibits a longer foreset and a thicker bottomset than in the former. Thirdly, the sizes of subaqueous colluvial aprons are not strongly correlated with the sizes of the source areas, while the sizes of Gilbert-type deltas are.展开更多
The timing of the "Yanshanian Movement" and the tectonic setting that controlled the Yanshan fold-and-thrust belt during Jurassic time in China are still matters of controversy. Sediments that filled the int...The timing of the "Yanshanian Movement" and the tectonic setting that controlled the Yanshan fold-and-thrust belt during Jurassic time in China are still matters of controversy. Sediments that filled the intramontane basins in the Yanshan belt perfectly record the history of "Yanshanian Movement" and the tectonic background of these basins. Recognizing syn-tectonic sedimentation, clarifying its relationship with structures, and accurately defining strata ages to build up a correct chronostratigraphic framework are the key points to further reveal the timing and kinematics of tectonic deformation in the Yanshan belt from the Jurassic to the Early Cretaceous. This paper applies both tectonic and sedimentary methods on the fold-and-thrust belt and intramontane basins in the Zhangjiakou area, which is located at the intersection between the western Yanshan and northern Taihangshan. Our work suggests that the pre-defined "Jurassic strata" should be re-dated and sub-divided into three strata units: a Late Triassic to Early Jurassic unit, a Middle Jurassic unit, and a Late Jurassic to early Early Cretaceous unit. Under the control of growth fold-and-thrust structures, five types of growth strata developed in different growth structures: fold-belt foredeep type,thrust-belt foredeep type, fault-propagation fold-thrust structure type, fault-bend fold-thrust structure type, and fault-bend foldthrust plus fault-propagation fold composite type. The reconstructed "source-to-sink" systems of Late Triassic to Early Jurassic,Middle Jurassic and Late Jurassic to early Early Cretaceous times, which are composed of a fold-and-thrust belt and flexure basins, imply that the "Yanshanian Movement" in our study area started in the Middle Jurassic. During Middle Jurassic to early Early Cretaceous times, there have been at least three stages of fold-thrust events that developed "Laramide-type" basementinvolved fold-thrust structures and small-scale intramontane broken "axial basins". The westward migration of a "pair" of basement-involved fold-thrust belt and flexure basins might have been controlled by flat subduction of the western Paleo-Pacific slab from the Jurassic to the Early Cretaceous.展开更多
Hydrocarbon source rocks, as a main geologic factor of petroliferous systems in a sedimentary basin, play a key role in the accumulation of oil and gas and the formation of hydrocarbon accumulations. This study, which...Hydrocarbon source rocks, as a main geologic factor of petroliferous systems in a sedimentary basin, play a key role in the accumulation of oil and gas and the formation of hydrocarbon accumulations. This study, which focuses on difficulties in prediction of hydrocarbon source rocks in basins or sags with low exploration degree and insufficient hydrocarbon source rock indicators, taking the Wenchang Formation of northern Zhu I Depression, Pearl River Mouth Basin as an example, proposed a hypothesis of “finding lakes and hydrocarbon source rocks”. Detailed steps include, first, determination of the lacustrine basin boundary according to analysis of seismic foreset facies, determination of the depositional area based on the compilation of strata residual thickness maps, determination of the lacustrine basin shape according to deciphering slope break belt system, determination of the fluctuation of paleo-water depth according to biogeochemical indicators of mature exploration areas, determination of the lacustrine basin scale based on analyses of tectonics intensity and accommodation space, which prove the existence of the lacustrine basin and identify the range of semi deep-deep lake;second, further analyses of tectonopalaeogeomorphology, paleo-provenance,palaeoclimate and paleo-water depth to reconstruct the geologic background of the original basin and semideep-deep lacustrine facies, to determine the distribution of semi-deep/deep lacustrine sediments in combination with studies of logging facies, core facies, seismic facies and sedimentary facies, and to rank the sags’ potential of developing hydrocarbon source rocks from controlling factors of source-to-sink system development;third, on the basis of regional sedimentary facies analysis, through identification and assessment of seismic facies types of semi-deep/deep lacustrine basins in mature areas, establishing “hydrocarbon source rock facies” in mature areas to instruct the identification and depicting of hydrocarbon source rocks in semideep/deep lacustrine basins with low exploration degree;fourth, through systematical summary of hydrocarbon-rich geological factors and lower limit index of hydrocarbon formation of the sags already revealed by drilling wells(e.g., sag area, tectonic subsidence amount, accommodation space, provenance characteristic, mudstone thickness, water body environment, sedimentary facies types of hydrocarbon source rocks), in correlation with corresponding indexes of sags with low exploration degree, then the evaluation and sorting of high-quality source rocks in areas with sparsely distributed or no drilling wells can be conducted with multi-factors and multiple dimensions. It is concluded that LF22 sag, HZ10 sag and HZ8 sag are II-order hydrocarbon rich sags;whereas HZS, HZ11 and HZ24 are the III-order hydrocarbon-generating sags.展开更多
基金The National Natural Science Foundation of China under contract No.42372154。
文摘Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwater reservoirs in the Lingshui Sag still have more fabulous oil and gas exploration potential.Based on drilling data and three-dimensional(3D)seismic data,this paper uses seismic facies analysis,seismic attribute analysis,and coherence slice analysis to identify the types of submarine fans(lobe-shaped and band-shaped submarine fans)that developed in the Lingshui Sag during the Middle Miocene,clarify the source-to-sink system of the submarine fans and discuss the genesis mechanism of the submarine fans.The results show that:(1)the deepwater source-to-sink system of the Lingshui Sag in the Middle Miocene mainly consisted of a“delta(sediment supply)-submarine canyon(sediment transport channel)-submarine fan(deepwater sediment sink)”association;(2)the main factor controlling the formation of the submarine fans developed in the Lingshui Sag was on the relative sea level decline;and(3)the bottom current reworked the lobe-shaped submarine fan that developed in the northern Lingshui Sag and formed the band-shaped submarine fan with a greater sand thickness.This paper aims to provide practical geological knowledge for subsequent petroleum exploration and development in the deepwater area of the Qiongdongnan Basin through a detailed analysis of the Middle Miocene submarine fan sedimentary system developed in the Lingshui Sag.
基金Supported by the National Natural Science Foundation of China(91528303)CNOOC Technology Project(2021-KT-YXKY-05).
文摘The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41572067,91855104,41802111)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA 20170301)the National Key Project for Basic Research of China(Grant No.2011CB403007)。
文摘The surface uplift of the Tibetan Plateau(TP)and its geomorphology evolution has triggered aridification of Asia's interior and drainage development at the eastern margin of the plateau.However,how the pre-Cenozoic early growth histories of the TP impact the drainage system and climate is poorly constrained.The Late Mesozoic Lacustrine evaporite-bearing basins on the eastern margin of the TP record significant information on the uplift of the source terranes,source-to-sink system development and climate change.In this study,we presented detrital zircon U-Pb ages from the Upper Cretaceous Yunlong Formation in the Lanping Basin,as well as Hf isotopic,petrographic,direct statistical,and multidimensional scaling analyses,and use them to characterize the provenance and reconstruct the drainage system.All of the samples have five major age peaks at 200-290 Ma,400-490 Ma,750-1000 Ma,1750-1950 Ma,and 2400-2600 Ma with mostly negativeε_(Hf)(t)values(81%).We infer the sediments are primarily derived from recycled sediments of the Songpan-Garze terrane,and partly from the Sichuan Basin and the Southern Qiangtang terrane,as well as the exposed magmatic rocks of the Yidun Arc and SongpanGarze terrane.The provenance features of the contemporaneous sediments from the Sichuan,Xichang,Chuxiong,and Simao basins indicate a complex hierarchical drainage pattern on the eastern margin of the TP during the Late Cretaceous.The hierarchical drainage system exhibits a complete gradational cycle of lake-basin types from overfilled freshwater Sichuan Basin through balanced fill saline Xichang Basin and underfilled hypersaline Chuxiong,Lanping,Simao,and Khorat Plateau basins from proximal to distal.The early growth of the TP primarily controlled the drainage and lake-basin evolution by not only causing the uplift and exhumation of the source areas and providing large amounts of clastic material to the proximal sub-drainage areas but also intensifying the aridity and deposition of evaporites.
基金supported by the National Natural Science Foundation of China(U21A20236,32072664)Natural Science Foundation of Hunan Province(2021JJ0004)China Agriculture Research System,and the Hunan Postgraduate Scientific Research Innovation Project(CX20190505)。
文摘Nitrogen(N)is an essential plant growth nutrient whose coordinated distribution from source to sink organs is crucial for seed development and overall crop yield.We compared high and low N use efficiency(NUE)Brassica napus(rapeseed)genotypes.Metabonomics and transcriptomics revealed that leaf senescence induced by N deficiency promoted amino acid allocation from older to younger leaves in the high-NUE genotype at the vegetative growth stage.Efficient source to sink remobilization of amino acids elevated the numbers of branches and pods per plant under a N-deficiency treatment during the reproductive stage.A15N tracer experiment confirmed that more amino acids were partitioned into seeds from the silique wall during the pod stage in the high-NUE genotype,owing mainly to variation in genes involved in organic N transport and metabolism.We suggest that the greater amino acid source-to-sink allocation efficiency during various growth stages in the high-NUE genotype resulted in higher yield and NUE under N deficiency.These findings support the hypothesis that strong amino acid remobilization in rapeseed leads to high yield,NUE,and harvest index.
基金The National Natural Science Foundation of China under contract Nos 42076066,92055203 and U20A20100。
文摘There are many large-scale Cenozoic sedimentary basins with plentiful river deltas,deep-water fans and carbonate platforms in the southern South China Sea.The Crocker Fan was deposited as a typical submarine fan during the late Eocene–early Miocene,and stretches extensively across the entire Sarawak–Sabah of the northern Borneo area.However,systematic analyses are still lacking regarding its sediment composition and potential source suppliers.No consensus has been reached yet on the provenance evolution and sedimentary infilling processes,which seriously impeded the oil-and-gas exploration undertakings.By combining with sedimentaryfacies identification,heavy mineral assemblages,elemental geochemistry and detrital zircon U-Pb dating,this paper aims to generalize an integrated analysis on the potential provenance terranes and restore source-to-sink pathways of the Crocker Fan.In general,the Crocker Fan was initially formed over the Cretaceous–lower/middle Eocene Rajang Group by an angular Rajang unconformity.The continual southward subduction of the protoSouth China Sea resulted in magmatic activities and subsequent regional deformation and thrusting along the Lupar Line in the northern Borneo.The lowermost Crocker sequence is featured by a thick conglomerate layer sourced from in-situ or adjacent paleo-uplifts.From the late Eocene to the early Miocene,the Crocker Fan was constantly delivered with voluminous detritus from the Malay Peninsula of the western Sundaland.The Zengmu Basin was widely deposited with delta plain and neritic facies sediments,while the Brunei-Sabah Basin,to the farther east,was ubiquitously characterized by turbiditic sequences.The Crocker Fan successions are overall thick layers of modest-grained sandstones,which formed high-quality reservoirs in the southern South China Sea region.
基金supported by the National Natural Science Foundation of China(grant nos 42076066,92055203 and 41874076)the National Science and Technology Major Project of China(grant no.2016ZX05026004-002)the National Key Research and Development Program of China(grant no.2018YFE0202400)。
文摘Located at the end of the northern Manila Trench,the Hengchun Peninsula is the latest exposed part of Taiwan Island,and preserves a complete sequence of accretionary deep-sea turbidite sandstones.Combined with extensive field observations,a’source-to-sink’approach was employed to systematically analyze the formation and evolutionary process of the accretionary prism turbidites on the Hengchun Peninsula.Lying at the base of the Hengchun turbidites are abundant mafic normal oceanic crust gravels with a certain degree of roundness.The gravels with U-Pb ages ranging from 25.4 to23.6 Ma are underlain by hundreds-of-meters thickness of younger deep-sea sandstone turbidites with interbedded gravels.This indicates that large amounts of terrigenous materials from both the’Kontum-Ying-Qiong’River of Indochina and the Pearl River of South China were transported into the deep-water areas of the northern South China Sea during the late Miocene and further eastward in the form of turbidity currents.The turbidity flow drastically eroded and snatched mafic materials from the normal South China Sea oceanic crust along the way,and subsequently unloaded large bodies of basic gravel-bearing sandstones to form turbidites near the northern Manila Trench.With the Philippine Sea Plate drifting clockwise to the northwest,these turbidite successions eventually migrated and,since the Middle Pleistocene,were exposed as an accretionary prism on the Hengchun Peninsula.
基金supported by National Natural Science Foundation of China(Nos.41376049 and 41225020)National Programme on Global Change and Air-Sea Interaction(GASI-GEOGE-03)by Ao Shan Talents Program Supported by Qingdao National Laboratory for Marine Science and Technology(No.2015ASTP-OS11)
文摘As a result of recycling, the mineralogical and chemical compositions of riverine sediments may reflect the combined effects of the present-day weathering regime as well as previous weathering and diagenetic alteration history. River sediments can be interpreted as a mixture of non-weathered bedrock—of igneous, metamorphic, or sedimentary origin—and solids formed by the modern weathering system. The correlation between the weathering proxies chemical index of alteration and weathering index of Parker offers an approach to distinguish fine suspended particles, coarse bedload sediments, and recycled sediments under the influence of quartz dilution. Recycling of cation-depleted source rocks formed during past geological weathering episodes may have great impacts on the weathering indices of sediments from the Changjiang(Yangzte) and Zhuoshui Rivers. Special caution is required when using chemical weathering indices to investigate the intensity of chemical weathering registered in fluvial sediments. To minimize the effect of hydrodynamic sorting or sediment recycling, we suggest that the fine sediments(e.g.suspended particles and ﹤2 lm fractions of bedload sediments) in rivers better reflect the average of weatheredcrust in catchments and the terrigenous end-member in marginal seas.
基金supported by the National Natural Science Foundation of China(No.41572090)National Science and Technology Major Project(No.2016ZX05041004–003)
文摘Palaeodrainage basin,as an important component of the source-to-sink system,contains critical information on provenance and palaeoenvironment.Previous studies indicate that the scaling relationships of source-to-sink system components generally follow power laws,and channel-belt thickness represents a reliable first-order proxy for the drainage area.In this study,a database of borehole cores and geophysical well logs of the Jurassic coal measures from Saishiteng area in the northern Qaidam Basin was used to reconstruct the palaeogeography,and to identify single-story channel-belts.Three palaeochannels,namely,River A,River B and River C,were identified which were persistent throughout the Dameigou and Shimengou Formations during the Middle Jurassic.The mean channel-belt thicknesses of River A,River B and River C in the Dameigou Formation were 9.8 m,8.9 m and 7.9 m,respectively,and those in the Shimengou Formation were 7.4 m,6.2 m and 5.4 m,respectively.We estimate the drainage area of three major rivers by using scaling relationships between drainage area and channel-belt thickness.The drainage areas of River A,River B and River C in the Dameigou Formation were 63.0×10~3 km^2,50.1×10~3 km^2 and 37.7×10~3 km^2,respectively,and those in the Shimengou Formation were 32.3×10~3 km^2,21.2×10~3 km^2 and15.3×10~3 km^2,respectively.The drainage basin lengths of River A,River B and River C in the Dameigou Formation were 300.4 km,239 km and 180.2 km,respectively,and those in the Shimengou Formation were 154.3 km,101.3 km and 73.1 km,respectively.For both the Dameigou and Shimengou Formations,River A showed the largest scale,followed by River B and River C succeedingly,which was mainly determined by the stretch direction of provenance in the southern Qilian Mountains.The variations of channel-belt thickness,drainage area and drainage basin length between Dameigou and Shimengou Formations are the response of source-to-sink system to the transformation from extension to compression depression during the Middle Jurassic in the northern Qaidam Basin.
基金the National Natural Science Foundation of China (Grant No. 42172115,41972099, 42102153)the China Postdoctoral Science Foundation (Grant No. 2021M693500)the National Major Science and Technology Projects of China(Grant No. 2017ZX05009-002, 2017ZX05072-002)。
文摘Investigating the formation and evolution of coarse-grained deposits in modern lakes and the relevant controlling conditions is indispensable to the prediction of reservoir sandbodies, disaster prediction,and limnological research. The source-to-sink system of coarse-grained deposits in Lake Chenghai, a deep,scarped Late Quaternary lake, was investigated in this study based on 62 outcrops, Advanced Land Observing Satellite(ALOS) digital elevation model(DEM) data, and regional geological survey data. The findings include the following:(1) the source areas of coarse-grained deposits in Lake Chenghai were lithologically classified into carbonate source areas, basaltic source areas and siliciclastic source areas, and were geomorphically categorized as scarp type or confluence type. Subaqueous colluvial aprons have formed downstream of the carbonate source areas and scarp-type basaltic source areas, while Gilbert-type deltas have formed downstream of siliciclastic source areas and confluence-type basaltic source areas.(2) The formation and evolution of coarse-grained deposits are controlled by the sediment flux that evolves in synchrony with the geomorphic evolution of the source areas and the sink regimes. Scarps represent the initial landform of the source areas.Source material rolls off or slides down scarps or forms small-scale debris flows before entering the lake. The source material initially formed subaqueous colluvial apron(synonymous with subaqueous fans) where sufficient space was present to accommodate sediments and the basement angle exceeded than the natural angle of repose. As weathering and denudation have progressed, the initial scarps have transformed into confluencetype slopes, and the source material has formed medium-and large-scale debris flows that have entered the lake, resulting in an increase in sediment flux. Consequently, the subaqueous colluvial aprons have rapidly grown and developed subaerial deposits, which have evolved into larger-scale Gilbert-type deltas that overlie the initial aprons.(3) The morphology and distribution of coarse-grained deposits vary in response to differences in quantity and composition of materials from different source areas, which resulting from different rates of weathering and denudation and different sediment input regimes. Firstly, the size and surface slope angle of a subaqueous colluvial apron from a carbonate source are smaller than those of a subaqueous colluvial apron of basaltic origin. Secondly, a Gilbert-type delta from a basaltic source features a greater slope angle and a thicker topset than does a Gilbert-type delta of siliciclastic origin, and the latter exhibits a longer foreset and a thicker bottomset than in the former. Thirdly, the sizes of subaqueous colluvial aprons are not strongly correlated with the sizes of the source areas, while the sizes of Gilbert-type deltas are.
基金supported by National Natural Science Foundation of China(Grant Nos.41572189&91114203)National Key R&D Plan(Grant No.2017YFC0601405)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB18000000)
文摘The timing of the "Yanshanian Movement" and the tectonic setting that controlled the Yanshan fold-and-thrust belt during Jurassic time in China are still matters of controversy. Sediments that filled the intramontane basins in the Yanshan belt perfectly record the history of "Yanshanian Movement" and the tectonic background of these basins. Recognizing syn-tectonic sedimentation, clarifying its relationship with structures, and accurately defining strata ages to build up a correct chronostratigraphic framework are the key points to further reveal the timing and kinematics of tectonic deformation in the Yanshan belt from the Jurassic to the Early Cretaceous. This paper applies both tectonic and sedimentary methods on the fold-and-thrust belt and intramontane basins in the Zhangjiakou area, which is located at the intersection between the western Yanshan and northern Taihangshan. Our work suggests that the pre-defined "Jurassic strata" should be re-dated and sub-divided into three strata units: a Late Triassic to Early Jurassic unit, a Middle Jurassic unit, and a Late Jurassic to early Early Cretaceous unit. Under the control of growth fold-and-thrust structures, five types of growth strata developed in different growth structures: fold-belt foredeep type,thrust-belt foredeep type, fault-propagation fold-thrust structure type, fault-bend fold-thrust structure type, and fault-bend foldthrust plus fault-propagation fold composite type. The reconstructed "source-to-sink" systems of Late Triassic to Early Jurassic,Middle Jurassic and Late Jurassic to early Early Cretaceous times, which are composed of a fold-and-thrust belt and flexure basins, imply that the "Yanshanian Movement" in our study area started in the Middle Jurassic. During Middle Jurassic to early Early Cretaceous times, there have been at least three stages of fold-thrust events that developed "Laramide-type" basementinvolved fold-thrust structures and small-scale intramontane broken "axial basins". The westward migration of a "pair" of basement-involved fold-thrust belt and flexure basins might have been controlled by flat subduction of the western Paleo-Pacific slab from the Jurassic to the Early Cretaceous.
基金supported by the National Science Foundation of China (Grant No. 41676050)。
文摘Hydrocarbon source rocks, as a main geologic factor of petroliferous systems in a sedimentary basin, play a key role in the accumulation of oil and gas and the formation of hydrocarbon accumulations. This study, which focuses on difficulties in prediction of hydrocarbon source rocks in basins or sags with low exploration degree and insufficient hydrocarbon source rock indicators, taking the Wenchang Formation of northern Zhu I Depression, Pearl River Mouth Basin as an example, proposed a hypothesis of “finding lakes and hydrocarbon source rocks”. Detailed steps include, first, determination of the lacustrine basin boundary according to analysis of seismic foreset facies, determination of the depositional area based on the compilation of strata residual thickness maps, determination of the lacustrine basin shape according to deciphering slope break belt system, determination of the fluctuation of paleo-water depth according to biogeochemical indicators of mature exploration areas, determination of the lacustrine basin scale based on analyses of tectonics intensity and accommodation space, which prove the existence of the lacustrine basin and identify the range of semi deep-deep lake;second, further analyses of tectonopalaeogeomorphology, paleo-provenance,palaeoclimate and paleo-water depth to reconstruct the geologic background of the original basin and semideep-deep lacustrine facies, to determine the distribution of semi-deep/deep lacustrine sediments in combination with studies of logging facies, core facies, seismic facies and sedimentary facies, and to rank the sags’ potential of developing hydrocarbon source rocks from controlling factors of source-to-sink system development;third, on the basis of regional sedimentary facies analysis, through identification and assessment of seismic facies types of semi-deep/deep lacustrine basins in mature areas, establishing “hydrocarbon source rock facies” in mature areas to instruct the identification and depicting of hydrocarbon source rocks in semideep/deep lacustrine basins with low exploration degree;fourth, through systematical summary of hydrocarbon-rich geological factors and lower limit index of hydrocarbon formation of the sags already revealed by drilling wells(e.g., sag area, tectonic subsidence amount, accommodation space, provenance characteristic, mudstone thickness, water body environment, sedimentary facies types of hydrocarbon source rocks), in correlation with corresponding indexes of sags with low exploration degree, then the evaluation and sorting of high-quality source rocks in areas with sparsely distributed or no drilling wells can be conducted with multi-factors and multiple dimensions. It is concluded that LF22 sag, HZ10 sag and HZ8 sag are II-order hydrocarbon rich sags;whereas HZS, HZ11 and HZ24 are the III-order hydrocarbon-generating sags.