The urban agriculture park plan involves urban plan, agricultural plan, eco- logical plan, tourism plan and land plan, which can be further divided into strategic plan, general plan and detail plan to explore related ...The urban agriculture park plan involves urban plan, agricultural plan, eco- logical plan, tourism plan and land plan, which can be further divided into strategic plan, general plan and detail plan to explore related issues. With social develop- ment, urban agricultural park is playing an increasingly important role in promoting agricultural and rural development, protecting nearby area farmlands and maintaining sustainable development, as well as an important part of government research. Based on status quo of urban agricultural park in China, basic characters were summarized and frameworks of urban agricultural park with Chinese characteristics were proposed, including early-stage research, prospect exploration, spatial planning, industry planning and guarantees, of which spatial planning and industry planning are highlights.展开更多
t In this paper an overall scheme of the task management system of ternary optical computer (TOC) is proposed, and the software architecture chart is given. The function and accomplishment of each module in the syst...t In this paper an overall scheme of the task management system of ternary optical computer (TOC) is proposed, and the software architecture chart is given. The function and accomplishment of each module in the system are described in general. In addition, according to the aforementioned scheme a prototype of TOC task management system is implemented, and the feasibility, rationality and completeness of the scheme are verified via running and testing the prototype.展开更多
The technical route of partial revision in overall plan of land use is briefly described.It is pointed out that problems of area measuring in the technical route are mainly due to the digital process.The digital probl...The technical route of partial revision in overall plan of land use is briefly described.It is pointed out that problems of area measuring in the technical route are mainly due to the digital process.The digital problems of partial revision in overall plan of land use are presented as follows:the maps are not proofread before digitalization;the coordinate matching and projection transformation are not conducted on the maps;the information is asymmetrical pre and post the digitalization;the location lacks precision;the result maps are substandard.The causes of these problems are analyzed,which cover the following aspects.The lack of united management regulations;uneven working abilities of the staff in the compilation units;unawareness of the importance of map digilalization;poor basic conclitions of the original plan maps.At last,the relevant suggestions are put forward,for instance,releasing the national united management methods and technical criteria,establishing industrial admittance system and qualification system of complication units,setting up the mechanism of supervising digitalized results and controlling the quality,conducting coordinate matching and projection transformation and unifying the specification and mode of the results of maps so as to provide technical support for the overall plan of land use,play the micro-regulating role of land use and take a leading role in the sustainable development of social economy.展开更多
The system composition, the operational principle of terminal correction mortar projectiles (TCMP) and the concept planning design of TCMP are researched in this paper. An overall design and aerodynamic configuratio...The system composition, the operational principle of terminal correction mortar projectiles (TCMP) and the concept planning design of TCMP are researched in this paper. An overall design and aerodynamic configuration layout for TCMP are made in this paper, and its aerodynamic coefficients are calculated by using computational fluid dynamics (CFD) software. Test results of TCMP simulated ballistic projectiles indicate the designed TCMP can satisfy the interior ballistic demand and has a fine flight stability. The drag coefficients identified from the radar velocity-time data are in accord with the CFD computed results. According to the exposure frequency of the ground laser designator, a four-quadrant impulse correction scheme and a high exposure frequency impulse correction scheme are brought. The latter can calculate the target azimuth angle by counting the times of the facula passing through one quadrant. Simulation results also show that the guidance precision of the velocity pursuit is higher than that of the body pursuit, and the detector axis is less circuitous. Researches on the typical trajectory indicate that the terminal impulse correction can improve the hit precision of TCMP remarkably.展开更多
The overall planning of land use is a complex process of joint action of social system, natural and economic conditions. On the basis of summarizing the existing researches, we select Shaanxi's Shangluo City, loca...The overall planning of land use is a complex process of joint action of social system, natural and economic conditions. On the basis of summarizing the existing researches, we select Shaanxi's Shangluo City, located in the Qinba mountainous area as the study object, to expound the concept and steps of scenario analysis based on land use change data, under the guidance of ecological safety and sustainable development theory. We design four different scenarios of land use planning program in Shangluo City during the period 2006-2020, and use grey linear programming model to analyze each scenario. The results show that the scenario analysis is feasible in the adjustment of land use structure in Shangluo City; operable in the determining of land use planning program on a macro-municipal scale.展开更多
The concept of urban green space system planning was proposed after analyzing the background of compiling Guangzhou green space system planning and current situation of local green spaces,i.e. design landscape pattern...The concept of urban green space system planning was proposed after analyzing the background of compiling Guangzhou green space system planning and current situation of local green spaces,i.e. design landscape pattern of Guangzhou City during urban agglomeration of the Pearl River Delta,and highlight Lingnan cultures(Lingnan refers to south of the Five Ridges) and features of "Flower City"(another name of Guangzhou). Key points of planning are protecting ecological barriers in the north,improving urban garden structure in the center,using wetland reasonably in the south,to maintain integrality and continuity of the landscape pattern.展开更多
This article addresses a production planning optimization problem of overall refinery. The authors formulated the optimization problem as mixed integer linear programming. The model considers the main factors for opti...This article addresses a production planning optimization problem of overall refinery. The authors formulated the optimization problem as mixed integer linear programming. The model considers the main factors for optimizing the production plan of overall refinery related to the use of run-modes of processing units. The aim of this planning is to decide which run-mode to use in each processing unit in each period of a given horizon, to satisfy the demand, such as the total cost of production and inventory is minimized. The resulting model can be regarded as a generalized lot-sizing problem where a run-mode can produce and consume more than one product. The resulting optimization problem is large-sized and NP-hard. The authors have proposed a column generation-based algorithm called branch-and-price (BP) for solving the interested optimization problem. The model and implementation of the algorithm are described in detail in this article. The computational results verify the effectiveness of the proposed model and the solution method.展开更多
Zoning system is the basic mode of establishment of overall land use planning. In this study,the zoning mode and practice in the three rounds of overall land use planning that have been carried out in China were analy...Zoning system is the basic mode of establishment of overall land use planning. In this study,the zoning mode and practice in the three rounds of overall land use planning that have been carried out in China were analyzed and summarized firstly,and then some obvious problems existing in the implementation of the zoning mode were analyzed. Finally,countermeasures and suggestions were put forward to provide necessary reference for further development and improvement of the zoning mode and the development of overall land use planning at all levels in China.展开更多
The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube he...The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube heterojunction arrays were in-situ grown on copper foam(V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF)for efficient electrocatalytic overall water splitting.With the merits of nanotube arrays and efficient electronic mod-ulation drived by the OD vacancy defect and 2D heterojunction defect,the resultant V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF electrocatalyst exhibits excellent electrocatalytic activity with a low overpotential of 47 mV for the hydrogen evolution reaction(HER)at 10 mA cm^(-2) current density,and 263 mV for the oxygen evolution reaction(OER)at 50 mA cm^(-2) current density,as well as a cell voltage of 1.48 V at 10 mA cm^(-2).Moreover,the nanotube heterojunction arrays endows V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF with outstanding stability in long-term catalytic processes,as confirmed by the continuous chronopotentiom-etry tests at current densities of 10 mA cm^(-2) for 100 h.展开更多
Transition metal phosphides(TMPs)have emerged as an alternative to precious metals as efficient and low-cost catalysts for water electrolysis.Elemental doping and morphology control are effective approaches to further...Transition metal phosphides(TMPs)have emerged as an alternative to precious metals as efficient and low-cost catalysts for water electrolysis.Elemental doping and morphology control are effective approaches to further improve the performance of TMPs.Herein,Fe-doped CoP nanoframes(Fe-CoP NFs)with specific open cage configuration were designed and synthesized.The unique nano-framework structured Fe-CoP material shows overpotentials of only 255 and 122 mV at 10 mA cm^(−2)for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER),respectively,overwhelming most transition metal phosphides.For overall water splitting,the cell voltage is 1.65 V for Fe-CoP NFs at a current density of 10 mA cm^(−2),much superior to what is observed for the classical nanocubic structures.Fe-CoP NFs show no activity degradation up to 100 h which contrasts sharply with the rapidly decaying performance of noble metal catalyst reference.The superior electrocatalytic performance of Fe-CoP NFs due to abundant accessible active sites,reduced kinetic energy barrier,and preferable*O-containing intermediate adsorption is demonstrated through experimental observations and theoretical calculations.Our findings could provide a potential method for the preparation of multifunctional material with hollow structures and offer more hopeful prospects for obtaining efficient earth-abundant catalysts for water splitting.展开更多
The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A sel...The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A self-supporting,multiscale porous NiFeZn/NiZn-Ni catalyst with a triple interface heterojunction on nickel foam(NF)(NiFeZn/NiZn-Ni/NF)was in-situ fabricated using an electroplating-annealing-etching strategy.The unique multiinterface engineering and three-dimensional porous scaffold significantly modify the mass transport and electron interaction,resulting in superior bifunctional electrocatalytic performance for water splitting.The NiFeZn/NiZn-Ni/NF catalyst demonstrates low overpotentials of 187 m V for HER and 320 mV for OER at a current density of 600 mA/cm^(2),along with high durability over 150 h in alkaline solution.Furthermore,an electrolytic cell assembled with NiFeZn/NiZn-Ni/NF as both the cathode and anode achieves the current densities of 600 and 1000 m A/cm^(2) at cell voltages of 1.796 and 1.901 V,respectively,maintaining the high stability at 50 mA/cm^(2) for over 100 h.These findings highlight the potential of NiFeZn/NiZn-Ni/NF as a cost-effective and highly efficient bifunctional electrocatalyst for overall water splitting.展开更多
Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen e...Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen evolution reaction(OER),have significant research potential because hydroxide reconstruction to generate an active phase is a remarkable advantage.Herein,the complete reconstruction of ultrathin CoNi(OH)_(2) nanosheets was achieved by embedding Ag nanoparticles into the hydroxide to induce a spontaneous redox reaction(SRR),forming heterojunction Ag@CoNi(OH)_(2) for bifunctional hydrolysis.Theoretical calculations and in situ Raman and ex situ characterizations revealed that the inductive effect of the Ag cation redistributed the charge to promote phase transformation to highly activate Ag-modified hydroxides.The Co-Ni dual sites in Co/NiOOH serve as novel active sites for optimizing the intermediates,thereby weakening the barrier formed by OOH^*.Ag@CoNi(OH)_(2) required a potential of 1.55 V to drive water splitting at a current density of 10 mA cm^(-2),with nearly 98.6% Faraday efficiency.Through ion induction and triggering of electron regulation in the OER via the synergistic action of the heterogeneous interface and surface reconstruction,this strategic design can overcome the limited capacity of bimetallic hydroxides and bridge the gap between the basic theory and industrialization of water decomposition.展开更多
Urea oxidation reaction(UOR)is proposed as an exemplary half-reaction in renewable energy applications because of its low thermodynamical potential.However,challenges persist due to sluggish reaction kinetics and comp...Urea oxidation reaction(UOR)is proposed as an exemplary half-reaction in renewable energy applications because of its low thermodynamical potential.However,challenges persist due to sluggish reaction kinetics and complex by-products separation.To this end,we introduce the lattice oxygen oxidation mechanism(LOM),propelling a novel UOR route using a modified CoFe layered double hydroxide(LDH)catalyst termed CFRO-7.Theoretical calculations and in-situ characterizations highlight the activated lattice oxygen(O_(L))within CFRO-7 as pivotal sites for UOR,optimizing the reaction pathway and accelerating the kinetics.For the urea overall electrolysis application,the LOM route only requires a low voltage of 1.54 V to offer a high current of 100 mA cm^(-2) for long-term utilization(>48 h).Importantly,the by-product NCO^(-)−is significantly suppressed,while the CO_(2)2/N_(2) separation is efficiently achieved.This work proposed a pioneering paradigm,invoking the LOM pathway in urea electrolysis to expedite reaction dynamics and enhance product selectivity.展开更多
The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR inv...The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR involves two half-reactions:the CO_(2) reduction half-reaction(CRHR)and the water oxidation half-reaction(WOHR).Generally,both half-reactions can be promoted by adjusting the wettability of catalysts.However,there is a contradiction in wettability requirements for the two half-reactions.Specifically,CRHR prefers a hydrophobic surface that can accumulate more CO_(2) molecules on the active sites,ensuring the appropriate ratio of gas-phase(CO_(2))to liquid-phase(H_(2)O)reactants.Conversely,the WOHR prefers a hydrophilic surface that can promote the departure of the gaseous product(O_(2))from the catalyst surface,preventing isolation between active sites and the reactant(H_(2)O).Here,we successfully reconciled the contradictory wettability requirements for the CRHR and WOHR by creating an alternately hydrophobic catalyst.This was achieved through a selectively hydrophobic modification method and a charge-transfer-control strategy.Consequently,the collaboratively promoted CRHR and WOHR led to a significantly enhanced OPCRR with a solar-to-fuel conversion efficiency of 0.186%.Notably,in ethanol production,the catalyst exhibited a 10.64-fold increase in generation rate(271.44μmol g^(-1)h~(-1))and a 4-fold increase in selectivity(55.77%)compared to the benchmark catalyst.This innovative approach holds great potential for application in universal overall reactions involving gas participation.展开更多
BACKGROUND The colon cancer prognosis is influenced by multiple factors,including clinical,pathological,and non-biological factors.However,only a few studies have focused on computed tomography(CT)imaging features.The...BACKGROUND The colon cancer prognosis is influenced by multiple factors,including clinical,pathological,and non-biological factors.However,only a few studies have focused on computed tomography(CT)imaging features.Therefore,this study aims to predict the prognosis of patients with colon cancer by combining CT imaging features with clinical and pathological characteristics,and establishes a nomogram to provide critical guidance for the individualized treatment.AIM To establish and validate a nomogram to predict the overall survival(OS)of patients with colon cancer.METHODS A retrospective analysis was conducted on the survival data of 249 patients with colon cancer confirmed by surgical pathology between January 2017 and December 2021.The patients were randomly divided into training and testing groups at a 1:1 ratio.Univariate and multivariate logistic regression analyses were performed to identify the independent risk factors associated with OS,and a nomogram model was constructed for the training group.Survival curves were calculated using the Kaplan–Meier method.The concordance index(C-index)and calibration curve were used to evaluate the nomogram model in the training and testing groups.RESULTS Multivariate logistic regression analysis revealed that lymph node metastasis on CT,perineural invasion,and tumor classification were independent prognostic factors.A nomogram incorporating these variables was constructed,and the C-index of the training and testing groups was 0.804 and 0.692,respectively.The calibration curves demonstrated good consistency between the actual values and predicted probabilities of OS.CONCLUSION A nomogram combining CT imaging characteristics and clinicopathological factors exhibited good discrimination and reliability.It can aid clinicians in risk stratification and postoperative monitoring and provide important guidance for the individualized treatment of patients with colon cancer.展开更多
Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheet...Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheets(SFe-DMNs)were prepared based on the high-throughput density functional theory(DFT)calculation screening.Due to the synergistic effect between Fe atom and MoS_(2)and optimized intermediate binding energy,the SFe-DMNs could deliver outstanding activity for both HER and OER.When assembled into a two-electrode electrolytic cell,the SFe-DMNs could achieve the current density of 50 mA cm^(-2)at a low cell voltage of 1.55 V under neutral condition.These results not only confirmed the effectiveness of high-throughput screening,but also revealed the excellent activity and thus the potential applications in fuel cells of SFe-DMNs.展开更多
Perovskite SrTaO_(2)N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting.However,the formation of defect states during thermal nitridation severely hinders the separation o...Perovskite SrTaO_(2)N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting.However,the formation of defect states during thermal nitridation severely hinders the separation of charges,resulting in poor photocatalytic activity.In the present study,we successfully synthesize SrTaO_(2)N photocatalyst with low density of defect states,uniform morphology and particle size by flux-assisted one-pot nitridation combined with Mg doping.Some important parameters,such as the size of unit cell,the content of nitrogen,and microstructure,prove the successful doping of Mg.The defect-related carrier recombination has been significantly reduced by Mg doping,which effectively promotes the charge separation.Moreover,Mg doping induces a change of the band edge,which makes proton reduction have a stronger driving force.After modifying with the core/shell-structured Pt/Cr_(2)O_(3)cocatalyst,the H_(2)evolution activity of the optimized SrTaO_(2)N:Mg is 10 times that of the undoped SrTaO_(2)N,with an impressive apparent quantum yield of 1.51%at 420 nm.By coupling with Au-FeCoO_(x)modified BiVO_(4)as an O_(2)-evolution photocatalyst and[Fe(CN)_(6)]_(3)−/[Fe(CN)_(6)]_(4)−as the redox couple,a redox-based Z-scheme overall water splitting system is successfully constructed with an apparent quantum yield of 1.36%at 420 nm.This work provides an alternative way to prepare oxynitride semiconductors with reduced defects to promote the conversion of solar energy.展开更多
Electrocatalytic overall water splitting(OWS),a pivotal approach in addressing the global energy crisis,aims to produce hydrogen and oxygen.However,most of the catalysts in powder form are adhesively bounding to the e...Electrocatalytic overall water splitting(OWS),a pivotal approach in addressing the global energy crisis,aims to produce hydrogen and oxygen.However,most of the catalysts in powder form are adhesively bounding to the electrodes,resulting in catalyst detachment by bubble generation and other uncertain interference,and eventually reducing the OWS performance.To surmount this challenge,we synthesized a hybrid material of Co_(3)S_(4)-pyrolysis lotus fiber(labeled as Co_(3)S_(4)-p LF)textile by hydrothermal and hightemperature pyrolysis processes for electrocatalytic OWS.Owing to the natural LF textile exposing the uniformly distributed functional groups(AOH,ANH_(2),etc.)to anchor Co_(3)S_(4)nanoparticles with hierarchical porous structure and outstanding hydrophily,the hybrid Co_(3)S_(4)-p LF catalyst shows low overpotentials at 10 m A cm^(-2)(η_(10,HER)=100 m Vη_(10,OER)=240 mV)alongside prolonged operational stability during electrocatalytic reactions.Theoretical calculations reveal that the electron transfer from p LF to Co_(3)S_(4)in the hybrid Co_(3)S_(4)-p LF is beneficial to the electrocatalytic process.This work will shed light on the development of nature-inspired carbon-based materials in hybrid electrocatalysts for OWS.展开更多
BACKGROUND Gastric cancer(GC)is prevalent and aggressive,especially when patients have distant lung metastases,which often places patients into advanced stages.By identifying prognostic variables for lung metastasis i...BACKGROUND Gastric cancer(GC)is prevalent and aggressive,especially when patients have distant lung metastases,which often places patients into advanced stages.By identifying prognostic variables for lung metastasis in GC patients,it may be po-ssible to construct a good prediction model for both overall survival(OS)and the cumulative incidence prediction(CIP)plot of the tumour.AIM To investigate the predictors of GC with lung metastasis(GCLM)to produce nomograms for OS and generate CIP by using cancer-specific survival(CSS)data.METHODS Data from January 2000 to December 2020 involving 1652 patients with GCLM were obtained from the Surveillance,epidemiology,and end results program database.The major observational endpoint was OS;hence,patients were se-parated into training and validation groups.Correlation analysis determined va-rious connections.Univariate and multivariate Cox analyses validated the independent predictive factors.Nomogram distinction and calibration were performed with the time-dependent area under the curve(AUC)and calibration curves.To evaluate the accuracy and clinical usefulness of the nomograms,decision curve analysis(DCA)was performed.The clinical utility of the novel prognostic model was compared to that of the 7th edition of the American Joint Committee on Cancer(AJCC)staging system by utilizing Net Reclassification Improvement(NRI)and Integrated Discrimination Improvement(IDI).Finally,the OS prognostic model and Cox-AJCC risk stratification model modified for the AJCC system were compared.RESULTS For the purpose of creating the OS nomogram,a CIP plot based on CSS was generated.Cox multivariate regression analysis identified eleven significant prognostic factors(P<0.05)related to liver metastasis,bone metastasis,primary site,surgery,regional surgery,treatment sequence,chemotherapy,radiotherapy,positive lymph node count,N staging,and time from diagnosis to treatment.It was clear from the DCA(net benefit>0),time-de-pendent ROC curve(training/validation set AUC>0.7),and calibration curve(reliability slope closer to 45 degrees)results that the OS nomogram demonstrated a high level of predictive efficiency.The OS prediction model(New Model AUC=0.83)also performed much better than the old Cox-AJCC model(AUC difference between the new model and the old model greater than 0)in terms of risk stratification(P<0.0001)and verification using the IDI and NRI.CONCLUSION The OS nomogram for GCLM successfully predicts 1-and 3-year OS.Moreover,this approach can help to ap-propriately classify patients into high-risk and low-risk groups,thereby guiding treatment.展开更多
Taking overall planning of tour routes as the guiding concept of regional tourism development,one core,three subjects,three sections and three levels in the overall planning of tour routes were explored. Range,plannin...Taking overall planning of tour routes as the guiding concept of regional tourism development,one core,three subjects,three sections and three levels in the overall planning of tour routes were explored. Range,planning principle,optimized layout of travel channels,construction of tourist towns,construction of scenic areas,construction of highway landscapes along travel channels,construction of tourist distribution centers in the overall planning of tourist routes for Panzhihua City,Sichuan Province were elaborated. Signifi cance of the overall planning of tour routes was summarized.展开更多
文摘The urban agriculture park plan involves urban plan, agricultural plan, eco- logical plan, tourism plan and land plan, which can be further divided into strategic plan, general plan and detail plan to explore related issues. With social develop- ment, urban agricultural park is playing an increasingly important role in promoting agricultural and rural development, protecting nearby area farmlands and maintaining sustainable development, as well as an important part of government research. Based on status quo of urban agricultural park in China, basic characters were summarized and frameworks of urban agricultural park with Chinese characteristics were proposed, including early-stage research, prospect exploration, spatial planning, industry planning and guarantees, of which spatial planning and industry planning are highlights.
基金Project supported by the National Natural Science Foundation of China(Grant No.61073049)the Ph D Programs Foundation of the Ministry of Education of China(Grant No.20093108110016)the Shanghai Leading Academic Discipline Project(Grant No.J50103)
文摘t In this paper an overall scheme of the task management system of ternary optical computer (TOC) is proposed, and the software architecture chart is given. The function and accomplishment of each module in the system are described in general. In addition, according to the aforementioned scheme a prototype of TOC task management system is implemented, and the feasibility, rationality and completeness of the scheme are verified via running and testing the prototype.
基金Supported by"Revision and Compilation of the Overall Plan of Land Use in Chongqing"in Chongqing Administration of State-Owned Lands and Houses(2004001)
文摘The technical route of partial revision in overall plan of land use is briefly described.It is pointed out that problems of area measuring in the technical route are mainly due to the digital process.The digital problems of partial revision in overall plan of land use are presented as follows:the maps are not proofread before digitalization;the coordinate matching and projection transformation are not conducted on the maps;the information is asymmetrical pre and post the digitalization;the location lacks precision;the result maps are substandard.The causes of these problems are analyzed,which cover the following aspects.The lack of united management regulations;uneven working abilities of the staff in the compilation units;unawareness of the importance of map digilalization;poor basic conclitions of the original plan maps.At last,the relevant suggestions are put forward,for instance,releasing the national united management methods and technical criteria,establishing industrial admittance system and qualification system of complication units,setting up the mechanism of supervising digitalized results and controlling the quality,conducting coordinate matching and projection transformation and unifying the specification and mode of the results of maps so as to provide technical support for the overall plan of land use,play the micro-regulating role of land use and take a leading role in the sustainable development of social economy.
基金the Ministerial Level Advanced Research Foundation (40406030101)
文摘The system composition, the operational principle of terminal correction mortar projectiles (TCMP) and the concept planning design of TCMP are researched in this paper. An overall design and aerodynamic configuration layout for TCMP are made in this paper, and its aerodynamic coefficients are calculated by using computational fluid dynamics (CFD) software. Test results of TCMP simulated ballistic projectiles indicate the designed TCMP can satisfy the interior ballistic demand and has a fine flight stability. The drag coefficients identified from the radar velocity-time data are in accord with the CFD computed results. According to the exposure frequency of the ground laser designator, a four-quadrant impulse correction scheme and a high exposure frequency impulse correction scheme are brought. The latter can calculate the target azimuth angle by counting the times of the facula passing through one quadrant. Simulation results also show that the guidance precision of the velocity pursuit is higher than that of the body pursuit, and the detector axis is less circuitous. Researches on the typical trajectory indicate that the terminal impulse correction can improve the hit precision of TCMP remarkably.
基金Supported by Graduate Innovation Fund Project of Northwest University (10YSJ05)
文摘The overall planning of land use is a complex process of joint action of social system, natural and economic conditions. On the basis of summarizing the existing researches, we select Shaanxi's Shangluo City, located in the Qinba mountainous area as the study object, to expound the concept and steps of scenario analysis based on land use change data, under the guidance of ecological safety and sustainable development theory. We design four different scenarios of land use planning program in Shangluo City during the period 2006-2020, and use grey linear programming model to analyze each scenario. The results show that the scenario analysis is feasible in the adjustment of land use structure in Shangluo City; operable in the determining of land use planning program on a macro-municipal scale.
文摘The concept of urban green space system planning was proposed after analyzing the background of compiling Guangzhou green space system planning and current situation of local green spaces,i.e. design landscape pattern of Guangzhou City during urban agglomeration of the Pearl River Delta,and highlight Lingnan cultures(Lingnan refers to south of the Five Ridges) and features of "Flower City"(another name of Guangzhou). Key points of planning are protecting ecological barriers in the north,improving urban garden structure in the center,using wetland reasonably in the south,to maintain integrality and continuity of the landscape pattern.
基金Supported by the National Natural Science Foundation for Distinguished Young Scholars of China (No.70425003), the National High Technology Research and Development Program of China (No.2006AA04Z174), the Natural Science Foundation of Liaoning Province (No.20061006) and the Enterprise Post-Doctorial Foundation of Liaoning Province.
文摘This article addresses a production planning optimization problem of overall refinery. The authors formulated the optimization problem as mixed integer linear programming. The model considers the main factors for optimizing the production plan of overall refinery related to the use of run-modes of processing units. The aim of this planning is to decide which run-mode to use in each processing unit in each period of a given horizon, to satisfy the demand, such as the total cost of production and inventory is minimized. The resulting model can be regarded as a generalized lot-sizing problem where a run-mode can produce and consume more than one product. The resulting optimization problem is large-sized and NP-hard. The authors have proposed a column generation-based algorithm called branch-and-price (BP) for solving the interested optimization problem. The model and implementation of the algorithm are described in detail in this article. The computational results verify the effectiveness of the proposed model and the solution method.
文摘Zoning system is the basic mode of establishment of overall land use planning. In this study,the zoning mode and practice in the three rounds of overall land use planning that have been carried out in China were analyzed and summarized firstly,and then some obvious problems existing in the implementation of the zoning mode were analyzed. Finally,countermeasures and suggestions were put forward to provide necessary reference for further development and improvement of the zoning mode and the development of overall land use planning at all levels in China.
基金supported by the National Natural Science Foundation of China under Grant No.52072196,52002200,52102106,52202262,22379081,22379080Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant No.ZR2020zD09the Natural Science Foundation of Shandong Province under Grant No.ZR2020QE063,ZR202108180009,ZR2023QE059.
文摘The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube heterojunction arrays were in-situ grown on copper foam(V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF)for efficient electrocatalytic overall water splitting.With the merits of nanotube arrays and efficient electronic mod-ulation drived by the OD vacancy defect and 2D heterojunction defect,the resultant V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF electrocatalyst exhibits excellent electrocatalytic activity with a low overpotential of 47 mV for the hydrogen evolution reaction(HER)at 10 mA cm^(-2) current density,and 263 mV for the oxygen evolution reaction(OER)at 50 mA cm^(-2) current density,as well as a cell voltage of 1.48 V at 10 mA cm^(-2).Moreover,the nanotube heterojunction arrays endows V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF with outstanding stability in long-term catalytic processes,as confirmed by the continuous chronopotentiom-etry tests at current densities of 10 mA cm^(-2) for 100 h.
基金the China Scholarship Council(CSC)for the financial support(202206230096)D.Yu would like to thank the CSC for the Doctor scholarship(202006360037)+1 种基金J.Dutta would like to acknowledge the partial financial support of VINNOVA project no.2021-02313.PZhang would like to acknowledge partial financial support from the National Natural Science Foundation of China(Nos 52111530187,51972210).
文摘Transition metal phosphides(TMPs)have emerged as an alternative to precious metals as efficient and low-cost catalysts for water electrolysis.Elemental doping and morphology control are effective approaches to further improve the performance of TMPs.Herein,Fe-doped CoP nanoframes(Fe-CoP NFs)with specific open cage configuration were designed and synthesized.The unique nano-framework structured Fe-CoP material shows overpotentials of only 255 and 122 mV at 10 mA cm^(−2)for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER),respectively,overwhelming most transition metal phosphides.For overall water splitting,the cell voltage is 1.65 V for Fe-CoP NFs at a current density of 10 mA cm^(−2),much superior to what is observed for the classical nanocubic structures.Fe-CoP NFs show no activity degradation up to 100 h which contrasts sharply with the rapidly decaying performance of noble metal catalyst reference.The superior electrocatalytic performance of Fe-CoP NFs due to abundant accessible active sites,reduced kinetic energy barrier,and preferable*O-containing intermediate adsorption is demonstrated through experimental observations and theoretical calculations.Our findings could provide a potential method for the preparation of multifunctional material with hollow structures and offer more hopeful prospects for obtaining efficient earth-abundant catalysts for water splitting.
基金financially supported from the National Natural Science Foundation of China(No.52201254)the Natural Science Foundation of Shandong Province,China(Nos.ZR2023ME155,ZR2020MB090,ZR2020QE012,ZR2020MB027)+1 种基金the Project of“20 Items of University”of Jinan,China(No.202228046)the Taishan Scholar Project of Shandong Province,China(No.tsqn202306226)。
文摘The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A self-supporting,multiscale porous NiFeZn/NiZn-Ni catalyst with a triple interface heterojunction on nickel foam(NF)(NiFeZn/NiZn-Ni/NF)was in-situ fabricated using an electroplating-annealing-etching strategy.The unique multiinterface engineering and three-dimensional porous scaffold significantly modify the mass transport and electron interaction,resulting in superior bifunctional electrocatalytic performance for water splitting.The NiFeZn/NiZn-Ni/NF catalyst demonstrates low overpotentials of 187 m V for HER and 320 mV for OER at a current density of 600 mA/cm^(2),along with high durability over 150 h in alkaline solution.Furthermore,an electrolytic cell assembled with NiFeZn/NiZn-Ni/NF as both the cathode and anode achieves the current densities of 600 and 1000 m A/cm^(2) at cell voltages of 1.796 and 1.901 V,respectively,maintaining the high stability at 50 mA/cm^(2) for over 100 h.These findings highlight the potential of NiFeZn/NiZn-Ni/NF as a cost-effective and highly efficient bifunctional electrocatalyst for overall water splitting.
基金supported by the Inner Mongolia R&D Program Plan(2021ZD0042,2021EEDSCXSFQZD006)the National Natural Science Foundation of China(21902123)the Natural Science Basic Research Program of Shaanxi(2023-JC-ZD-22)。
文摘Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen evolution reaction(OER),have significant research potential because hydroxide reconstruction to generate an active phase is a remarkable advantage.Herein,the complete reconstruction of ultrathin CoNi(OH)_(2) nanosheets was achieved by embedding Ag nanoparticles into the hydroxide to induce a spontaneous redox reaction(SRR),forming heterojunction Ag@CoNi(OH)_(2) for bifunctional hydrolysis.Theoretical calculations and in situ Raman and ex situ characterizations revealed that the inductive effect of the Ag cation redistributed the charge to promote phase transformation to highly activate Ag-modified hydroxides.The Co-Ni dual sites in Co/NiOOH serve as novel active sites for optimizing the intermediates,thereby weakening the barrier formed by OOH^*.Ag@CoNi(OH)_(2) required a potential of 1.55 V to drive water splitting at a current density of 10 mA cm^(-2),with nearly 98.6% Faraday efficiency.Through ion induction and triggering of electron regulation in the OER via the synergistic action of the heterogeneous interface and surface reconstruction,this strategic design can overcome the limited capacity of bimetallic hydroxides and bridge the gap between the basic theory and industrialization of water decomposition.
基金supported by Fundamental Research Funds for the Central Universities(B220202062)supported by Key Program of National Natural Science Foundation of China(92047201,92047303,52102237)+1 种基金National Science Funds for Creative Research Groups of China(51421006)supported by Postdoctoral Science Foundations of China and Jiangsu Province(2021M690861,2022T150183,2021K065A)。
文摘Urea oxidation reaction(UOR)is proposed as an exemplary half-reaction in renewable energy applications because of its low thermodynamical potential.However,challenges persist due to sluggish reaction kinetics and complex by-products separation.To this end,we introduce the lattice oxygen oxidation mechanism(LOM),propelling a novel UOR route using a modified CoFe layered double hydroxide(LDH)catalyst termed CFRO-7.Theoretical calculations and in-situ characterizations highlight the activated lattice oxygen(O_(L))within CFRO-7 as pivotal sites for UOR,optimizing the reaction pathway and accelerating the kinetics.For the urea overall electrolysis application,the LOM route only requires a low voltage of 1.54 V to offer a high current of 100 mA cm^(-2) for long-term utilization(>48 h).Importantly,the by-product NCO^(-)−is significantly suppressed,while the CO_(2)2/N_(2) separation is efficiently achieved.This work proposed a pioneering paradigm,invoking the LOM pathway in urea electrolysis to expedite reaction dynamics and enhance product selectivity.
基金financially supported by the National Natural Science Foundation of China(22378204,22008121,51790492)the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(T2125004)+1 种基金the Funding of NJUST(No.TSXK2022D002)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0454)。
文摘The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR involves two half-reactions:the CO_(2) reduction half-reaction(CRHR)and the water oxidation half-reaction(WOHR).Generally,both half-reactions can be promoted by adjusting the wettability of catalysts.However,there is a contradiction in wettability requirements for the two half-reactions.Specifically,CRHR prefers a hydrophobic surface that can accumulate more CO_(2) molecules on the active sites,ensuring the appropriate ratio of gas-phase(CO_(2))to liquid-phase(H_(2)O)reactants.Conversely,the WOHR prefers a hydrophilic surface that can promote the departure of the gaseous product(O_(2))from the catalyst surface,preventing isolation between active sites and the reactant(H_(2)O).Here,we successfully reconciled the contradictory wettability requirements for the CRHR and WOHR by creating an alternately hydrophobic catalyst.This was achieved through a selectively hydrophobic modification method and a charge-transfer-control strategy.Consequently,the collaboratively promoted CRHR and WOHR led to a significantly enhanced OPCRR with a solar-to-fuel conversion efficiency of 0.186%.Notably,in ethanol production,the catalyst exhibited a 10.64-fold increase in generation rate(271.44μmol g^(-1)h~(-1))and a 4-fold increase in selectivity(55.77%)compared to the benchmark catalyst.This innovative approach holds great potential for application in universal overall reactions involving gas participation.
基金Supported by Cancer Research Program of National Cancer Center,No.NCC201917B05Special Research Fund Project of Biomedical Center of Hubei Cancer Hospital,No.2022SWZX06.
文摘BACKGROUND The colon cancer prognosis is influenced by multiple factors,including clinical,pathological,and non-biological factors.However,only a few studies have focused on computed tomography(CT)imaging features.Therefore,this study aims to predict the prognosis of patients with colon cancer by combining CT imaging features with clinical and pathological characteristics,and establishes a nomogram to provide critical guidance for the individualized treatment.AIM To establish and validate a nomogram to predict the overall survival(OS)of patients with colon cancer.METHODS A retrospective analysis was conducted on the survival data of 249 patients with colon cancer confirmed by surgical pathology between January 2017 and December 2021.The patients were randomly divided into training and testing groups at a 1:1 ratio.Univariate and multivariate logistic regression analyses were performed to identify the independent risk factors associated with OS,and a nomogram model was constructed for the training group.Survival curves were calculated using the Kaplan–Meier method.The concordance index(C-index)and calibration curve were used to evaluate the nomogram model in the training and testing groups.RESULTS Multivariate logistic regression analysis revealed that lymph node metastasis on CT,perineural invasion,and tumor classification were independent prognostic factors.A nomogram incorporating these variables was constructed,and the C-index of the training and testing groups was 0.804 and 0.692,respectively.The calibration curves demonstrated good consistency between the actual values and predicted probabilities of OS.CONCLUSION A nomogram combining CT imaging characteristics and clinicopathological factors exhibited good discrimination and reliability.It can aid clinicians in risk stratification and postoperative monitoring and provide important guidance for the individualized treatment of patients with colon cancer.
基金supported by the Research Funds of Institute of Zhejiang University-Quzhou(IZQ2023RCZX032)the Natural Science Foundation of Guangdong Province(2022A1515010185)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-20-005A3)partially supported by the Special Funds for Postdoctoral Research at Tsinghua University(100415017)。
文摘Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheets(SFe-DMNs)were prepared based on the high-throughput density functional theory(DFT)calculation screening.Due to the synergistic effect between Fe atom and MoS_(2)and optimized intermediate binding energy,the SFe-DMNs could deliver outstanding activity for both HER and OER.When assembled into a two-electrode electrolytic cell,the SFe-DMNs could achieve the current density of 50 mA cm^(-2)at a low cell voltage of 1.55 V under neutral condition.These results not only confirmed the effectiveness of high-throughput screening,but also revealed the excellent activity and thus the potential applications in fuel cells of SFe-DMNs.
文摘Perovskite SrTaO_(2)N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting.However,the formation of defect states during thermal nitridation severely hinders the separation of charges,resulting in poor photocatalytic activity.In the present study,we successfully synthesize SrTaO_(2)N photocatalyst with low density of defect states,uniform morphology and particle size by flux-assisted one-pot nitridation combined with Mg doping.Some important parameters,such as the size of unit cell,the content of nitrogen,and microstructure,prove the successful doping of Mg.The defect-related carrier recombination has been significantly reduced by Mg doping,which effectively promotes the charge separation.Moreover,Mg doping induces a change of the band edge,which makes proton reduction have a stronger driving force.After modifying with the core/shell-structured Pt/Cr_(2)O_(3)cocatalyst,the H_(2)evolution activity of the optimized SrTaO_(2)N:Mg is 10 times that of the undoped SrTaO_(2)N,with an impressive apparent quantum yield of 1.51%at 420 nm.By coupling with Au-FeCoO_(x)modified BiVO_(4)as an O_(2)-evolution photocatalyst and[Fe(CN)_(6)]_(3)−/[Fe(CN)_(6)]_(4)−as the redox couple,a redox-based Z-scheme overall water splitting system is successfully constructed with an apparent quantum yield of 1.36%at 420 nm.This work provides an alternative way to prepare oxynitride semiconductors with reduced defects to promote the conversion of solar energy.
基金supported by the Scientific Research Foundation of Hunan Provincial Education Department,China(22B0893)the Scientific Research Foundation of Hunan Provincial Education Department,China(20A060)。
文摘Electrocatalytic overall water splitting(OWS),a pivotal approach in addressing the global energy crisis,aims to produce hydrogen and oxygen.However,most of the catalysts in powder form are adhesively bounding to the electrodes,resulting in catalyst detachment by bubble generation and other uncertain interference,and eventually reducing the OWS performance.To surmount this challenge,we synthesized a hybrid material of Co_(3)S_(4)-pyrolysis lotus fiber(labeled as Co_(3)S_(4)-p LF)textile by hydrothermal and hightemperature pyrolysis processes for electrocatalytic OWS.Owing to the natural LF textile exposing the uniformly distributed functional groups(AOH,ANH_(2),etc.)to anchor Co_(3)S_(4)nanoparticles with hierarchical porous structure and outstanding hydrophily,the hybrid Co_(3)S_(4)-p LF catalyst shows low overpotentials at 10 m A cm^(-2)(η_(10,HER)=100 m Vη_(10,OER)=240 mV)alongside prolonged operational stability during electrocatalytic reactions.Theoretical calculations reveal that the electron transfer from p LF to Co_(3)S_(4)in the hybrid Co_(3)S_(4)-p LF is beneficial to the electrocatalytic process.This work will shed light on the development of nature-inspired carbon-based materials in hybrid electrocatalysts for OWS.
基金Supported by Peng-Cheng Talent-Medical Young Reserve Talent Training Program,No.XWRCHT20220002Xuzhou City Health and Health Commission Technology Project Contract,No.XWKYHT20230081and Key Research and Development Plan Project of Xuzhou City,No.KC22179.
文摘BACKGROUND Gastric cancer(GC)is prevalent and aggressive,especially when patients have distant lung metastases,which often places patients into advanced stages.By identifying prognostic variables for lung metastasis in GC patients,it may be po-ssible to construct a good prediction model for both overall survival(OS)and the cumulative incidence prediction(CIP)plot of the tumour.AIM To investigate the predictors of GC with lung metastasis(GCLM)to produce nomograms for OS and generate CIP by using cancer-specific survival(CSS)data.METHODS Data from January 2000 to December 2020 involving 1652 patients with GCLM were obtained from the Surveillance,epidemiology,and end results program database.The major observational endpoint was OS;hence,patients were se-parated into training and validation groups.Correlation analysis determined va-rious connections.Univariate and multivariate Cox analyses validated the independent predictive factors.Nomogram distinction and calibration were performed with the time-dependent area under the curve(AUC)and calibration curves.To evaluate the accuracy and clinical usefulness of the nomograms,decision curve analysis(DCA)was performed.The clinical utility of the novel prognostic model was compared to that of the 7th edition of the American Joint Committee on Cancer(AJCC)staging system by utilizing Net Reclassification Improvement(NRI)and Integrated Discrimination Improvement(IDI).Finally,the OS prognostic model and Cox-AJCC risk stratification model modified for the AJCC system were compared.RESULTS For the purpose of creating the OS nomogram,a CIP plot based on CSS was generated.Cox multivariate regression analysis identified eleven significant prognostic factors(P<0.05)related to liver metastasis,bone metastasis,primary site,surgery,regional surgery,treatment sequence,chemotherapy,radiotherapy,positive lymph node count,N staging,and time from diagnosis to treatment.It was clear from the DCA(net benefit>0),time-de-pendent ROC curve(training/validation set AUC>0.7),and calibration curve(reliability slope closer to 45 degrees)results that the OS nomogram demonstrated a high level of predictive efficiency.The OS prediction model(New Model AUC=0.83)also performed much better than the old Cox-AJCC model(AUC difference between the new model and the old model greater than 0)in terms of risk stratification(P<0.0001)and verification using the IDI and NRI.CONCLUSION The OS nomogram for GCLM successfully predicts 1-and 3-year OS.Moreover,this approach can help to ap-propriately classify patients into high-risk and low-risk groups,thereby guiding treatment.
文摘Taking overall planning of tour routes as the guiding concept of regional tourism development,one core,three subjects,three sections and three levels in the overall planning of tour routes were explored. Range,planning principle,optimized layout of travel channels,construction of tourist towns,construction of scenic areas,construction of highway landscapes along travel channels,construction of tourist distribution centers in the overall planning of tourist routes for Panzhihua City,Sichuan Province were elaborated. Signifi cance of the overall planning of tour routes was summarized.