Historic blocks that focus only on protection of tangible constructed environment have shown various disadvantages and gradually lost their originality, according to the investigation. Protection of historic blocks sh...Historic blocks that focus only on protection of tangible constructed environment have shown various disadvantages and gradually lost their originality, according to the investigation. Protection of historic blocks should attach more importance to maintaining original lifestyles and community customs, protecting intangible contents and cultural diversity. The authors proposed that protection of historic blocks should follow the principle of "putting protection and repair on the top priority, using reasonably" and stress the "living" protection. There are three patterns of "living" protection, specifically, joint participation of local residents, construction of education base, moderate tourism development. Vitality of local economy can be enhanced and social humanistic environment protected effectively by improving the locals' living environment, so as to show true care for the people living in the historic block, and bring historic blocks to the real life.展开更多
The protection of the Yangtze River Basin is a top priority in China,and the National People's Congress(NPC)Standing Committee has started to draft a new protection legislation specifically for the Yangtze River B...The protection of the Yangtze River Basin is a top priority in China,and the National People's Congress(NPC)Standing Committee has started to draft a new protection legislation specifically for the Yangtze River Basin.The Basin forms the epicenter of environmental,social,and economic life.Any efforts to protect the Basin must accommodate several competing interests from a multiplicity of interested parties and stakeholders such as local governments,villages,and business enterprises.Current relevant institutions and organizations are unable to sufficiently ensure environmental protection and green development in the Basin.The NPC Standing Committee must thus adopt a more holistic approach when creating new protection legislations aimed at the Yangtze River Basin.展开更多
In the year of 2011, in the emergency reinforcement project of the main dike of Yangtze River in Luhe District, Nanjing City, four underground pipelines were vertically crossed with the embankment. In this project, ea...In the year of 2011, in the emergency reinforcement project of the main dike of Yangtze River in Luhe District, Nanjing City, four underground pipelines were vertically crossed with the embankment. In this project, each pipeline had been es- tablished independent culvert structure for protection and high pressure injection method had been used for the foundation treatment. To extend the length of the foot of slope and to improve the impermeable capacity of the dike, additional com- posite geomembranes had been installed in the riverside slope. By optimizing the construction program and enhancing the settlement observation during the constrution period, the safe operation of the pipelines had therefore been ensured.展开更多
Seeking water and earning their livelihoods is the natural selection of human beings.Like other rivers on the earth,the Yangtze River is the birthplace of human civilization and survival.As an ecosystem,the Yangtze Ri...Seeking water and earning their livelihoods is the natural selection of human beings.Like other rivers on the earth,the Yangtze River is the birthplace of human civilization and survival.As an ecosystem,the Yangtze River Basin is evolving under the influences of natural factors and human activities.Because of soil erosion,pollution and human activities,the imbalance of secondary environment is exacerbated and the ecological environment has become more vulnerable,so it is urgent to mitigate and prevent the ecological crisis.The practice has proved that implementation of engineering measures is an effective way to improve the ecological environment.The Three Gorges Project (TGP) has a flood control storage capacity of 22.15 billion m 3,effectively storing the flood water upstream of Yichang,and protects 15 million people and 1.5 million hm 2 farmland.Furthermore,the project can prevent or slow down the sedimentation and shrinkage of the lakes in the middle Yangtze River such as Dongting Lake;with an average annual power generation of about 90 billion kW· h,it can significantly reduce the emissions of harmful gas like CO 2.In general,the construction of TGP is conducive to the ecological and environmental protection in the Yangtze River Basin and China,even the world.展开更多
The Yangtze River is the largest river in China, about 6,300 kilometres long with a drainage area and population accounting for 18.8 percent and 33 percent respectively in China. Aiming at increasing forest and vegeta...The Yangtze River is the largest river in China, about 6,300 kilometres long with a drainage area and population accounting for 18.8 percent and 33 percent respectively in China. Aiming at increasing forest and vegetation areas on the middle and upper reaches of the Yangtze River to control water and soil erosion, the Chinese government in 1989 decided to commence a construction project for the protection of the forest system on the middle and upper reaches of the Yangtze River. The project covers 645 counties (cities and districts) in 13 provinces,展开更多
Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon...Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon emissions in the Yangtze River Delta(YRD)through path analysis,and to forecast carbon emissions in the YRD from the baseline scenario,factor regulation scenario and integrated scenario to reach the peak.The results show that:(1)Jiangsu's high carbon emission pattern is the main reason for the YRD hindering the synergistic regulation of carbon emissions.(2)Human factors,institutional factors and economic growth factors can all contribute to carbon emissions in the YRD region,while technological and industrial factors can generally suppress carbon emissions in the YRD region.(3)Under the capital regulation scenario,the YRD region has the highest level of carbon emission synergy,with Jiangsu reaching its peak five years earlier.Under the balanced regulation scenario,the YRD region as a whole,Jiangsu,Zhejiang and Anhui reach the peak as scheduled.展开更多
Plate subduction leads to complex exhumation processes on continents.The Huangling Massif lies at the northern margin of the South China Block.Whether the Huangling Massif was exhumed as a watershed of the middle reac...Plate subduction leads to complex exhumation processes on continents.The Huangling Massif lies at the northern margin of the South China Block.Whether the Huangling Massif was exhumed as a watershed of the middle reaches of the Paleo-Yangtze River during the Mesozoic remains under debate.We examined the exhumation history of the Huangling Massif based on six granite bedrock samples,using apatite fission track(AFT)and apatite and zircon(U-Th)/He(AHe and ZHe)thermochronology.These samples yielded ages of 157–132 Ma(ZHe),119–106 Ma(AFT),and 114–72 Ma(AHe),respectively.Thermal modeling revealed that three phases of rapid cooling occurred during the Late Jurassic–Early Cretaceous,late Early Cretaceous,and Late Cretaceous.These exhumation processes led to the high topographic relief responsible for the emergence of the Huangling Massif.The integrated of our new data with published sedimentological records suggests that the Huangling Massif might have been the watershed of the middle reaches of the Paleo-Yangtze River since the Cretaceous.At that time,the rivers flowed westward into the Sichuan Basin and eastward into the Jianghan Basin.The subduction of the Pacific Plate beneath the Asian continent in the Mesozoic deeply influenced the geomorphic evolution of the South China Block.展开更多
In the summer of 2022,China(especially the Yangtze River Valley,YRV)suffered its strongest heatwave(HW)event since 1961.In this study,we examined the influences of multiscale variabilities on the 2022 extreme HW in th...In the summer of 2022,China(especially the Yangtze River Valley,YRV)suffered its strongest heatwave(HW)event since 1961.In this study,we examined the influences of multiscale variabilities on the 2022 extreme HW in the lower reaches of the YRV,focusing on the city of Shanghai.We found that about 1/3 of the 2022 HW days in Shanghai can be attributed to the long-term warming trend of global warming.During mid-summer of 2022,an enhanced western Pacific subtropical high(WPSH)and anomalous double blockings over the Ural Mountains and Sea of Okhotsk,respectively,were associated with the persistently anomalous high pressure over the YRV,leading to the extreme HW.The Pacific Decadal Oscillation played a major role in the anomalous blocking pattern associated with the HW at the decadal time scale.Also,the positive phase of the Atlantic Multidecadal Oscillation may have contributed to regulating the formation of the double-blocking pattern.Anomalous warming of both the warm pool of the western Pacific and tropical North Atlantic at the interannual time scale may also have favored the persistency of the double blocking and the anomalously strong WPSH.At the subseasonal time scale,the anomalously frequent phases 2-5 of the canonical northward propagating variability of boreal summer intraseasonal oscillation associated with the anomalous propagation of a weak Madden-Julian Oscillation suppressed the convection over the YRV and also contributed to the HW.Therefore,the 2022 extreme HW originated from multiscale forcing including both the climate warming trend and air-sea interaction at multiple time scales.展开更多
The dual-path model of industrial evolution and spatial progression has been widely acknowledged and incorporated into the strategic planning to promote the development of urban industries and regional collaborations....The dual-path model of industrial evolution and spatial progression has been widely acknowledged and incorporated into the strategic planning to promote the development of urban industries and regional collaborations.However,current research on inter-enter-prise city networks mainly focuses on the single sector of flows on all enterprise branches,such as product value chains and production factors,but neglects that of particular industry department.Built upon the new economic geography and city networks theory,this paper develops a methodological framework that focuses on the analysis of city network evolution characteristics of smart industry.Particu-larly,a conceptual model of smart industry enterprise-industry-city is proposed and then applied to a case study of smart industry in the Yangtze River Delta Region,China.Using enterprise supplier-customer data,a city network of smart industry is constructed and sub-sequently analyzed with the proposed model.Findings indicate that the smart industry network in Yangtze River Delta Region exhibits a hierarchical structure and the expansion of the network presents a small-world network characteristic.The study not only makes a meth-odological contribution for revealing the industrial and spatial evolution path of the current smart industry,but also provides empirical support for the formulation of new economic development policies focused on smart industries,demonstrating the role of city clusters as carriers of regional synergistic development.展开更多
City cluster is an effective platform for encouraging regionally coordinated development.Coordinated reduction of carbon emissions within city cluster via the spatial association network between cities can help coordi...City cluster is an effective platform for encouraging regionally coordinated development.Coordinated reduction of carbon emissions within city cluster via the spatial association network between cities can help coordinate the regional carbon emission management,realize sustainable development,and assist China in achieving the carbon peaking and carbon neutrality goals.This paper applies the improved gravity model and social network analysis(SNA)to the study of spatial correlation of carbon emissions in city clusters and analyzes the structural characteristics of the spatial correlation network of carbon emissions in the Yangtze River Delta(YRD)city cluster in China and its influencing factors.The results demonstrate that:1)the spatial association of carbon emissions in the YRD city cluster exhibits a typical and complex multi-threaded network structure.The network association number and density show an upward trend,indicating closer spatial association between cities,but their values remain generally low.Meanwhile,the network hierarchy and network efficiency show a downward trend but remain high.2)The spatial association network of carbon emissions in the YRD city cluster shows an obvious‘core-edge’distribution pattern.The network is centered around Shanghai,Suzhou and Wuxi,all of which play the role of‘bridges’,while cities such as Zhoushan,Ma'anshan,Tongling and other cities characterized by the remote location,single transportation mode or lower economic level are positioned at the edge of the network.3)Geographic proximity,varying levels of economic development,different industrial structures,degrees of urbanization,levels of technological innovation,energy intensities and environmental regulation are important influencing factors on the spatial association of within the YRD city cluster.Finally,policy implications are provided from four aspects:government macro-control and market mechanism guidance,structural characteristics of the‘core-edge’network,reconfiguration and optimization of the spatial layout of the YRD city cluster,and the application of advanced technologies.展开更多
Establishing the Greater Food Approach and promoting the Yangtze River Economic Belt s national major regional development strategy can better support and serve the agricultural power and Chinese-style modernization.T...Establishing the Greater Food Approach and promoting the Yangtze River Economic Belt s national major regional development strategy can better support and serve the agricultural power and Chinese-style modernization.This paper introduces the characteristics of fruit industry in 16 autonomous prefectures and 47 autonomous counties under the jurisdiction of the Yangtze River Economic Belt.It studies the intellectual property resources of brand marks from the aspects of geographical indications,collective trademarks,certification trademarks,well-known trademarks in China and national design patents,and analyzes the main problems of brand and high-quality development of fruit industry in these ethnic autonomous areas.Finally,it puts forward some strategies,such as improving the protection of intellectual property rights of geographical indications,using intellectual property rights of brand signs,building modern seed industry upgrading project,drawing lessons from the experience of thousand villages demonstration project,ensuring that large-scale poverty does not occur,and building a diversified food supply system.展开更多
The spatial and temporal variation of green economic efficiency and its driving factors are of great significance for the construction of high-efficiency and low-consumption green development model and sustainable soc...The spatial and temporal variation of green economic efficiency and its driving factors are of great significance for the construction of high-efficiency and low-consumption green development model and sustainable socio-economic development.The research focused on the Yangtze River Economic Belt(YREB)and employed the miniumum distance to strong efficient frontier DEA(MinDs)model to measure the green economic efficiency of the municipalities in the region between 2008 and 2020.Then,the spatial autocorrelation model was used to analyze the evolution characteristics of its spatial pattern.Finally,Geodetector was applied to reveal the drivers and their interactions on green economic efficiency.It is found that:1)the overall green economic efficiency of the YREB from 2008 to 2020 shows a W-shaped fluctuating upward trend,green economic efficiency is greater in the downstream and smallest in the upstream;2)the spatial distribution of green economic efficiency shows clustering characteristics,with multi-core clustering based on‘city clusters-central cities'becoming more obvious over time;the High-High agglomeration type is mainly clustered in Jiangsu and Zheji-ang,while the Low-Low agglomeration type is clustered in the western Sichuan Plateau area and southwestern Yunnan;3)from input-output factors,whether it is the YREB as a whole or the upper,middle and lower reaches regions,the economic development level,labor input,and capital investment are the leading factors in the spatial-temporal evolution of green economic efficiency,with the com-prehensive influence of economic development level and pollution index being the most important interactive driving factor;4)from so-cio-economic factors,information technology drivers such as government intervention,transportation accessibility,information infra-structure,and Internet penetration are always high impact influencers and dominant interaction factors for green economic efficiency in the YREB and the three major regions in the upper,middle and lower reaches.Accordingly,the article puts forward relevant policy re-commendations in terms of formulating differentiated green transformation strategies,strengthening network leadership and informa-tion technology construction and coordinating multi-factor integrated development,which could provide useful reference for promoting synergistic green economic efficiency in the YREB.展开更多
Urban agglomerations,serving as pivotal centers of human activity,undergo swift alterations in ecosystem services prompted by shifts in land utilization.Strengthening the monitoring of ecosystem services in present an...Urban agglomerations,serving as pivotal centers of human activity,undergo swift alterations in ecosystem services prompted by shifts in land utilization.Strengthening the monitoring of ecosystem services in present and future urban agglomerations contributes to the rational planning of these areas and enhances the well-being of their inhabitants.Here,we analyzed land use conversion in the Yangtze River Delta(YRD)urban agglomeration during 1990-2020 and discussed the spatiotemporal response and main drivers of changes in ecosystem service value(ESV).By considering the different development strategic directions described in land use planning policies,we predicted land use conversion and its impact on ESV using the Future Land Use Simulation(FLUS)model in three scenari-os in 2025 and 2030.Results show that:1)from 1990 to 2020,land use change is mainly manifested as the continuous expansion of con-struction land to cultivated land.Among the reduced cultivated land,82.2%were occupied by construction land.2)The land use types conversion caused a loss of 21.85 billion yuan(RMB)in ESV during 1990-2020.Moreover,the large reduction of cultivated land area led to the continuous decline of food production value,accounting for 13%of the total ESV loss.3)From 2020 to 2030,land use change will mainly focus on Yangzhou and Zhenjiang in central Jiangsu Province and Taizhou in southern Zhejiang Province.Under the BAU(natural development)and ED(cultivated land protection)scenarios,construction land expansion remains dominant.In contrast,under the EP(ecological protection)scenario,the areas of water bodies and forest land increase significantly.Among the different scenarios,ESV is highest in the EP scenario,making it the optimal solution for sustainable land use.It can be seen that the space use conflict among urban,agriculture and ecology is a key factor leading to ESV change in the urban agglomeration of Yangtze River Delta.There-fore,it is crucial to maintain spatial land use coordination.Our findings provide suggestions for scientific and rational land use planning for the urban agglomeration.展开更多
Accelerating the construction of agricultural power,further promoting the high-quality development of the Yangtze River Economic Belt,and better supporting and serving Chinese-style modernization are the key issues at...Accelerating the construction of agricultural power,further promoting the high-quality development of the Yangtze River Economic Belt,and better supporting and serving Chinese-style modernization are the key issues at present.This paper first introduces the Yangtze River Economic Belt and its ethnic areas,and studies the characteristics of the grain and oil industry in the ethnic autonomous areas of the economic belt,as well as the current situation of various types of intellectual property resources,such as industrial cultural heritage,scientific and tech-nological innovation,and brand marking intellectual property.Besides,it analyzes the main problems in the high-quality development of grain and oil in the Yangtze River Economic Belt ethnic areas.Finally,it comes up with recommendations,including protecting the intellectual prop-erty rights of cultural heritage in the field of grain and oil,leading the inheritance and development of excellent traditional Chinese culture,use scientific and technological innovation intellectual property rights to promote the innovation-driven development strategy of the grain and oil in-dustry,and providing counterpart assistance to ethnic autonomous areas in the Yangtze River Economic Belt to further promote the high-quality development of the Yangtze River Economic Belt.展开更多
The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource produ...The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource productivity in the Yangtze River Delta(YRD)Region.From 2004 to 2018,there were notable variations in the ecological productivity of different types of land on basis of China’s equilibrium factor across the three provinces and one city in the YRD region.Jiangsu Province exhibited the highest ecological productivity of arable land,while Anhui Province exhibited the highest ecological productivity of forest land.Shanghai City exhibited the highest ecological productivity of pasture land,while Zhejiang Province exhibited the highest ecological productivity of water area.In 2018,the proportion of arable land within the total ecological carrying capacity of the YRD region reached 74.35%.Furthermore,the contribution of Jiangsu and Anhui provinces to the YRD’s total ecological carrying capacity was 41.36%and 41.26%,respectively.In the construction of a new development pattern in the YRD region,which is dominated by the domestic cycle as the main body and mutually reinforced by domestic and international double-cycle,the YRD region should combine the utilization of natural forces with innovation in science,technology and cooperation mechanisms.Furthermore,the government should guide the concentration of social capital towards green industries.It is also recommended that the moderate reduction of ecological footprints should be encouraged,and that the security of biological resources and energy,the leadership in the field of cutting-edge science and technology should be ensured in YRD region.This will facilitate the formation of a new development pattern of higher-quality integration at the national level firstly.展开更多
The Yangtze River estuary is the main production area of Anguilla japonica in China,as well as the only existing fishery area for adult eels.Japanese eels are distributed in the main rivers and many tributaries from t...The Yangtze River estuary is the main production area of Anguilla japonica in China,as well as the only existing fishery area for adult eels.Japanese eels are distributed in the main rivers and many tributaries from the Yangtze River estuary to the upper Jinsha River,which extend to nearly 3 000 km.However,their migration behaviors remain relatively unknown.We analyzed the biological characteristics of 153 specimens of silver eels collected from the Jingjiang section of Yangtze River(31o30'N,120o42'E) between September and November,2008,and tested the sagittal Sr/Ca ratios of 27 specimens.Among the 153 specimens examined,85 were female and 68 were male,which translated to a female-male ratio of 1:0.8.The ages of the female specimens ranged from 3 to 7 a(average 5.52) with an average total length(TL) of(669±80) mm,average body weight(BW) of(555±229)g,average condition factor of 1.77±0.22,and average gonad somatic index(GSI) of 1.32±0.31.The ages of the males ranged from 3 to 5 a(average:4.38) with an average TL of(518±51) mm,average BW of(234±76) g,average condition factor of 1.62±0.18,and average GSI of 0.21±0.11.All biological parameters of females were significantly larger than those of the male specimens(P0.05).According to the average Sr/Ca ratio(7.99±1.05) ×10-3 of the elver mark of sagitta,17 individuals(62.96%) were river eels and 10 individuals(37.04%) were estuarine eels.Of 16 females,13 individuals(81.25%) were river eels and 3 were estuarine eels,while of 11 males,36.36% were river eels and 63.64% were estuarine eels.The analysis on Sr/Ca ratios for every growth layer group(GLG) indicated there were no significant differences between second-age males and females.However,significant differences were observed between the third-age,fourth-age,and migration-age male and female specimens.This was likely related to the fact that second-age eels of both sexes stay in the same inhabitation waters;however,as they grow older,they move to different areas.展开更多
Anchovies are migratory fish and adult individuals migrate in group from the sea into the river every year because of reproductive needs. TheYangtze River is the largest river in China, with rich food and fish species...Anchovies are migratory fish and adult individuals migrate in group from the sea into the river every year because of reproductive needs. TheYangtze River is the largest river in China, with rich food and fish species, hence, the Yangtze River would be an ideal habitat for growth and reproduction of anchovy. In this pa- per, based on fishing log data of anchovy in Jiangsu section of the Yangtze River, realted analysis was conducted in digital map using statistical software and GIS. From 2008 to 2011, the number of anchovy fishing vessels and fishing days in Jiangsu section remained stable, but the fishing volume and economic profit of single-vessel fluctuated constantly. This study provides references and advices for plan and management of anchovy fishery resource to administrative department.展开更多
It is well known that, in most cases, soil water doesn't move in the form of laminar flow as described by Darcy law. Only when Reynolds number ( Re ) is no more than 10, does water movement follow Darcy law. A s...It is well known that, in most cases, soil water doesn't move in the form of laminar flow as described by Darcy law. Only when Reynolds number ( Re ) is no more than 10, does water movement follow Darcy law. A soil profile with 2 9 m long and 2 13 2 60 m deep was excavated on a lower slope located at Zigui County, Hubei Province, China. Field observation found that soil pipes were mainly distributed in the transient layer between horizon B with higher degree of granite weathering and horizon C with lower degree of granite weathering. At the foot of the slope, about 5 7 soil pipes per meter were observed along the vertical direction of the slope. The observed results, obtained by continuous observation of soil pipes and pipe flow processes at granite slope for many rainfall events, indicate that the relationship between velocity of pipe flow and hydraulic gradient along the pipe is parabolic rather than linear. Based on the investigated data of soil, landform, and land use etc., combined with observed data of pipe flow derived from many rainfall events, a pipe flow model was developed. For velocity V p, discharge Q p of pipe flow and radius r of soil pipe, great similarity was found between simulated and observed values. Particularly, the simulated length of soil pipes reflects the great difference among soil pipes as a result of its different position in the soil profile. The length values of 4 soil pipes were estimated to be 98 1%, 27 6%, 11 0% and 3 0% of the longest distance of the catchment, respectively. As a special case of water movement, soil pipe flow follows Darcy Weisbach law. Discharge of pipe flow is much greater than infiltration discharge in common. Only when the depth of groundwater is more than the diameter of soil pipe and water layer submerges soil pipes during rainfall, may pipe flow occur. Under these circumstances, discharge of pipe flow is directly proportional to the depth of groundwater.展开更多
[Objective] Surveys of phytoplankton were taken during the autumn of 2009 along Anhui-Jiangsu reaches of the Yangtze River to understand the species com- position and their spatial distributions. [Method] Phytoplankto...[Objective] Surveys of phytoplankton were taken during the autumn of 2009 along Anhui-Jiangsu reaches of the Yangtze River to understand the species com- position and their spatial distributions. [Method] Phytoplankton species, their quanti- ties, biomass and the Mcnaughton's dominance indices were all measured and their spatial distribution characteristics were determined using cluster analysis. [Result] There were 27 species, belonging to 5 phyla, namely Chlorophyta, Bacillariophyta, Cyanophyta, Euglenophyta and Cryptophyta, of phytoplankton collected and identified from the surveys. Results showed that Bacillariophyta was the predominant phyto- plankton with 16 species collected which accounted for 59.3% of the total species identified. The number of species collected belonging to Chlorophyta, Cyanophyta, Cryptophyta and Euglenophyta were 6, 2, 2, and 1, accounting for 22.2%, 7.4%, 7.4% and 3.7% of the total number identified, respectively. At the species level, the predominant species were Fragilaria crotonensis, Melosira italica, Navicula crypto- cephala, Cyclotella striata and Chroomonas acuta. Phytoplankton abundance was ranging from 5.68×10^4 to 7.08×10^4 cells/L with its average of 6.01×10^4 cells/L. Phyto- plankton biomass was ranging from 30.43 to 34.73 μg/L with its average of 32.46 μg/L. Compared with the previous reports, the number of phytoplankton species was decreased but its abundance and biomass was increased along the Jiangsu reach of the Yangtze River. However, Bacillariophyta species were still the predominant species and the phytoplankton community structure had not significantly changed from the previous studies. [Conclusion] These results might be explained as that the water quality in the Yangtze River was deteriorated but had not come to the worst. The results of similarity analysis gave two clusters of phytoplankton community as Nanjing, Wuhu and Jiangyin sampling sites were clustered into one group and Tongling and Anqing were clustered into another group.展开更多
基金Supported by 2012 Philosophical and Social Science Research Guide Project of Universities and Colleges, Jiangsu Provincial Department of Education (2012SJD760001)
文摘Historic blocks that focus only on protection of tangible constructed environment have shown various disadvantages and gradually lost their originality, according to the investigation. Protection of historic blocks should attach more importance to maintaining original lifestyles and community customs, protecting intangible contents and cultural diversity. The authors proposed that protection of historic blocks should follow the principle of "putting protection and repair on the top priority, using reasonably" and stress the "living" protection. There are three patterns of "living" protection, specifically, joint participation of local residents, construction of education base, moderate tourism development. Vitality of local economy can be enhanced and social humanistic environment protected effectively by improving the locals' living environment, so as to show true care for the people living in the historic block, and bring historic blocks to the real life.
基金supported by the Chinese Fund for the Humanities and Social Sciences(15ZDB177).
文摘The protection of the Yangtze River Basin is a top priority in China,and the National People's Congress(NPC)Standing Committee has started to draft a new protection legislation specifically for the Yangtze River Basin.The Basin forms the epicenter of environmental,social,and economic life.Any efforts to protect the Basin must accommodate several competing interests from a multiplicity of interested parties and stakeholders such as local governments,villages,and business enterprises.Current relevant institutions and organizations are unable to sufficiently ensure environmental protection and green development in the Basin.The NPC Standing Committee must thus adopt a more holistic approach when creating new protection legislations aimed at the Yangtze River Basin.
文摘In the year of 2011, in the emergency reinforcement project of the main dike of Yangtze River in Luhe District, Nanjing City, four underground pipelines were vertically crossed with the embankment. In this project, each pipeline had been es- tablished independent culvert structure for protection and high pressure injection method had been used for the foundation treatment. To extend the length of the foot of slope and to improve the impermeable capacity of the dike, additional com- posite geomembranes had been installed in the riverside slope. By optimizing the construction program and enhancing the settlement observation during the constrution period, the safe operation of the pipelines had therefore been ensured.
文摘Seeking water and earning their livelihoods is the natural selection of human beings.Like other rivers on the earth,the Yangtze River is the birthplace of human civilization and survival.As an ecosystem,the Yangtze River Basin is evolving under the influences of natural factors and human activities.Because of soil erosion,pollution and human activities,the imbalance of secondary environment is exacerbated and the ecological environment has become more vulnerable,so it is urgent to mitigate and prevent the ecological crisis.The practice has proved that implementation of engineering measures is an effective way to improve the ecological environment.The Three Gorges Project (TGP) has a flood control storage capacity of 22.15 billion m 3,effectively storing the flood water upstream of Yichang,and protects 15 million people and 1.5 million hm 2 farmland.Furthermore,the project can prevent or slow down the sedimentation and shrinkage of the lakes in the middle Yangtze River such as Dongting Lake;with an average annual power generation of about 90 billion kW· h,it can significantly reduce the emissions of harmful gas like CO 2.In general,the construction of TGP is conducive to the ecological and environmental protection in the Yangtze River Basin and China,even the world.
文摘The Yangtze River is the largest river in China, about 6,300 kilometres long with a drainage area and population accounting for 18.8 percent and 33 percent respectively in China. Aiming at increasing forest and vegetation areas on the middle and upper reaches of the Yangtze River to control water and soil erosion, the Chinese government in 1989 decided to commence a construction project for the protection of the forest system on the middle and upper reaches of the Yangtze River. The project covers 645 counties (cities and districts) in 13 provinces,
文摘Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon emissions in the Yangtze River Delta(YRD)through path analysis,and to forecast carbon emissions in the YRD from the baseline scenario,factor regulation scenario and integrated scenario to reach the peak.The results show that:(1)Jiangsu's high carbon emission pattern is the main reason for the YRD hindering the synergistic regulation of carbon emissions.(2)Human factors,institutional factors and economic growth factors can all contribute to carbon emissions in the YRD region,while technological and industrial factors can generally suppress carbon emissions in the YRD region.(3)Under the capital regulation scenario,the YRD region has the highest level of carbon emission synergy,with Jiangsu reaching its peak five years earlier.Under the balanced regulation scenario,the YRD region as a whole,Jiangsu,Zhejiang and Anhui reach the peak as scheduled.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41671011,41871019,41877292,41972212)Research Foundation of Chutian Scholars Program of Hubei Province(Grant No.8210403)Shanxi Key Research and Development program:Feng Cheng(Grant No.2021SF2-03).
文摘Plate subduction leads to complex exhumation processes on continents.The Huangling Massif lies at the northern margin of the South China Block.Whether the Huangling Massif was exhumed as a watershed of the middle reaches of the Paleo-Yangtze River during the Mesozoic remains under debate.We examined the exhumation history of the Huangling Massif based on six granite bedrock samples,using apatite fission track(AFT)and apatite and zircon(U-Th)/He(AHe and ZHe)thermochronology.These samples yielded ages of 157–132 Ma(ZHe),119–106 Ma(AFT),and 114–72 Ma(AHe),respectively.Thermal modeling revealed that three phases of rapid cooling occurred during the Late Jurassic–Early Cretaceous,late Early Cretaceous,and Late Cretaceous.These exhumation processes led to the high topographic relief responsible for the emergence of the Huangling Massif.The integrated of our new data with published sedimentological records suggests that the Huangling Massif might have been the watershed of the middle reaches of the Paleo-Yangtze River since the Cretaceous.At that time,the rivers flowed westward into the Sichuan Basin and eastward into the Jianghan Basin.The subduction of the Pacific Plate beneath the Asian continent in the Mesozoic deeply influenced the geomorphic evolution of the South China Block.
基金the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030004)the National Natural Science Foundation of China(Grant No.42175056)+3 种基金the Natural Science Foundation of Shanghai(Grant No.21ZR1457600)Review and Summary Project of China Meteorological Administration(Grant No.FPZJ2023-044)the China Meteorological Administration Innovation and Development Project(Grant No.CXFZ2022J009)the Key Innovation Team of Climate Prediction of the China Meteorological Administration(Grant No.CMA2023ZD03).
文摘In the summer of 2022,China(especially the Yangtze River Valley,YRV)suffered its strongest heatwave(HW)event since 1961.In this study,we examined the influences of multiscale variabilities on the 2022 extreme HW in the lower reaches of the YRV,focusing on the city of Shanghai.We found that about 1/3 of the 2022 HW days in Shanghai can be attributed to the long-term warming trend of global warming.During mid-summer of 2022,an enhanced western Pacific subtropical high(WPSH)and anomalous double blockings over the Ural Mountains and Sea of Okhotsk,respectively,were associated with the persistently anomalous high pressure over the YRV,leading to the extreme HW.The Pacific Decadal Oscillation played a major role in the anomalous blocking pattern associated with the HW at the decadal time scale.Also,the positive phase of the Atlantic Multidecadal Oscillation may have contributed to regulating the formation of the double-blocking pattern.Anomalous warming of both the warm pool of the western Pacific and tropical North Atlantic at the interannual time scale may also have favored the persistency of the double blocking and the anomalously strong WPSH.At the subseasonal time scale,the anomalously frequent phases 2-5 of the canonical northward propagating variability of boreal summer intraseasonal oscillation associated with the anomalous propagation of a weak Madden-Julian Oscillation suppressed the convection over the YRV and also contributed to the HW.Therefore,the 2022 extreme HW originated from multiscale forcing including both the climate warming trend and air-sea interaction at multiple time scales.
基金Under the auspices of National Natural Science Foundation of China(No.42330510,41871160)。
文摘The dual-path model of industrial evolution and spatial progression has been widely acknowledged and incorporated into the strategic planning to promote the development of urban industries and regional collaborations.However,current research on inter-enter-prise city networks mainly focuses on the single sector of flows on all enterprise branches,such as product value chains and production factors,but neglects that of particular industry department.Built upon the new economic geography and city networks theory,this paper develops a methodological framework that focuses on the analysis of city network evolution characteristics of smart industry.Particu-larly,a conceptual model of smart industry enterprise-industry-city is proposed and then applied to a case study of smart industry in the Yangtze River Delta Region,China.Using enterprise supplier-customer data,a city network of smart industry is constructed and sub-sequently analyzed with the proposed model.Findings indicate that the smart industry network in Yangtze River Delta Region exhibits a hierarchical structure and the expansion of the network presents a small-world network characteristic.The study not only makes a meth-odological contribution for revealing the industrial and spatial evolution path of the current smart industry,but also provides empirical support for the formulation of new economic development policies focused on smart industries,demonstrating the role of city clusters as carriers of regional synergistic development.
基金Under the auspices of the National Natural Science Foundation of China (No.72273151)。
文摘City cluster is an effective platform for encouraging regionally coordinated development.Coordinated reduction of carbon emissions within city cluster via the spatial association network between cities can help coordinate the regional carbon emission management,realize sustainable development,and assist China in achieving the carbon peaking and carbon neutrality goals.This paper applies the improved gravity model and social network analysis(SNA)to the study of spatial correlation of carbon emissions in city clusters and analyzes the structural characteristics of the spatial correlation network of carbon emissions in the Yangtze River Delta(YRD)city cluster in China and its influencing factors.The results demonstrate that:1)the spatial association of carbon emissions in the YRD city cluster exhibits a typical and complex multi-threaded network structure.The network association number and density show an upward trend,indicating closer spatial association between cities,but their values remain generally low.Meanwhile,the network hierarchy and network efficiency show a downward trend but remain high.2)The spatial association network of carbon emissions in the YRD city cluster shows an obvious‘core-edge’distribution pattern.The network is centered around Shanghai,Suzhou and Wuxi,all of which play the role of‘bridges’,while cities such as Zhoushan,Ma'anshan,Tongling and other cities characterized by the remote location,single transportation mode or lower economic level are positioned at the edge of the network.3)Geographic proximity,varying levels of economic development,different industrial structures,degrees of urbanization,levels of technological innovation,energy intensities and environmental regulation are important influencing factors on the spatial association of within the YRD city cluster.Finally,policy implications are provided from four aspects:government macro-control and market mechanism guidance,structural characteristics of the‘core-edge’network,reconfiguration and optimization of the spatial layout of the YRD city cluster,and the application of advanced technologies.
基金Supported by Special Soft Science Research Project for Hubei Province Science and Technology Innovation Talents and Services(2022EDA060).
文摘Establishing the Greater Food Approach and promoting the Yangtze River Economic Belt s national major regional development strategy can better support and serve the agricultural power and Chinese-style modernization.This paper introduces the characteristics of fruit industry in 16 autonomous prefectures and 47 autonomous counties under the jurisdiction of the Yangtze River Economic Belt.It studies the intellectual property resources of brand marks from the aspects of geographical indications,collective trademarks,certification trademarks,well-known trademarks in China and national design patents,and analyzes the main problems of brand and high-quality development of fruit industry in these ethnic autonomous areas.Finally,it puts forward some strategies,such as improving the protection of intellectual property rights of geographical indications,using intellectual property rights of brand signs,building modern seed industry upgrading project,drawing lessons from the experience of thousand villages demonstration project,ensuring that large-scale poverty does not occur,and building a diversified food supply system.
基金Under the auspices of the National Natural Science Foundation of China(No.71974070)‘CUG Scholar'Scientific Research Funds at China University of Geosciences(Wuhan)(No.2022005)。
文摘The spatial and temporal variation of green economic efficiency and its driving factors are of great significance for the construction of high-efficiency and low-consumption green development model and sustainable socio-economic development.The research focused on the Yangtze River Economic Belt(YREB)and employed the miniumum distance to strong efficient frontier DEA(MinDs)model to measure the green economic efficiency of the municipalities in the region between 2008 and 2020.Then,the spatial autocorrelation model was used to analyze the evolution characteristics of its spatial pattern.Finally,Geodetector was applied to reveal the drivers and their interactions on green economic efficiency.It is found that:1)the overall green economic efficiency of the YREB from 2008 to 2020 shows a W-shaped fluctuating upward trend,green economic efficiency is greater in the downstream and smallest in the upstream;2)the spatial distribution of green economic efficiency shows clustering characteristics,with multi-core clustering based on‘city clusters-central cities'becoming more obvious over time;the High-High agglomeration type is mainly clustered in Jiangsu and Zheji-ang,while the Low-Low agglomeration type is clustered in the western Sichuan Plateau area and southwestern Yunnan;3)from input-output factors,whether it is the YREB as a whole or the upper,middle and lower reaches regions,the economic development level,labor input,and capital investment are the leading factors in the spatial-temporal evolution of green economic efficiency,with the com-prehensive influence of economic development level and pollution index being the most important interactive driving factor;4)from so-cio-economic factors,information technology drivers such as government intervention,transportation accessibility,information infra-structure,and Internet penetration are always high impact influencers and dominant interaction factors for green economic efficiency in the YREB and the three major regions in the upper,middle and lower reaches.Accordingly,the article puts forward relevant policy re-commendations in terms of formulating differentiated green transformation strategies,strengthening network leadership and informa-tion technology construction and coordinating multi-factor integrated development,which could provide useful reference for promoting synergistic green economic efficiency in the YREB.
基金Under the auspices of National Natural Science Foundation of China(No.42276234)National Social Science Foundation Major Project of China(No.23&ZD105)+1 种基金the Open Fund of the Key Laboratory of Coastal Zone Exploitation and Protection,Ministry of Natural Resources of China(No.2023CZEPK04)the Science and Technology Major Project of Ningbo(No.2021Z181)。
文摘Urban agglomerations,serving as pivotal centers of human activity,undergo swift alterations in ecosystem services prompted by shifts in land utilization.Strengthening the monitoring of ecosystem services in present and future urban agglomerations contributes to the rational planning of these areas and enhances the well-being of their inhabitants.Here,we analyzed land use conversion in the Yangtze River Delta(YRD)urban agglomeration during 1990-2020 and discussed the spatiotemporal response and main drivers of changes in ecosystem service value(ESV).By considering the different development strategic directions described in land use planning policies,we predicted land use conversion and its impact on ESV using the Future Land Use Simulation(FLUS)model in three scenari-os in 2025 and 2030.Results show that:1)from 1990 to 2020,land use change is mainly manifested as the continuous expansion of con-struction land to cultivated land.Among the reduced cultivated land,82.2%were occupied by construction land.2)The land use types conversion caused a loss of 21.85 billion yuan(RMB)in ESV during 1990-2020.Moreover,the large reduction of cultivated land area led to the continuous decline of food production value,accounting for 13%of the total ESV loss.3)From 2020 to 2030,land use change will mainly focus on Yangzhou and Zhenjiang in central Jiangsu Province and Taizhou in southern Zhejiang Province.Under the BAU(natural development)and ED(cultivated land protection)scenarios,construction land expansion remains dominant.In contrast,under the EP(ecological protection)scenario,the areas of water bodies and forest land increase significantly.Among the different scenarios,ESV is highest in the EP scenario,making it the optimal solution for sustainable land use.It can be seen that the space use conflict among urban,agriculture and ecology is a key factor leading to ESV change in the urban agglomeration of Yangtze River Delta.There-fore,it is crucial to maintain spatial land use coordination.Our findings provide suggestions for scientific and rational land use planning for the urban agglomeration.
基金Supported by Special Soft Science Research Project for Hubei Province Science and Technology Innovation Talents and Services(2022EDA060).
文摘Accelerating the construction of agricultural power,further promoting the high-quality development of the Yangtze River Economic Belt,and better supporting and serving Chinese-style modernization are the key issues at present.This paper first introduces the Yangtze River Economic Belt and its ethnic areas,and studies the characteristics of the grain and oil industry in the ethnic autonomous areas of the economic belt,as well as the current situation of various types of intellectual property resources,such as industrial cultural heritage,scientific and tech-nological innovation,and brand marking intellectual property.Besides,it analyzes the main problems in the high-quality development of grain and oil in the Yangtze River Economic Belt ethnic areas.Finally,it comes up with recommendations,including protecting the intellectual prop-erty rights of cultural heritage in the field of grain and oil,leading the inheritance and development of excellent traditional Chinese culture,use scientific and technological innovation intellectual property rights to promote the innovation-driven development strategy of the grain and oil in-dustry,and providing counterpart assistance to ethnic autonomous areas in the Yangtze River Economic Belt to further promote the high-quality development of the Yangtze River Economic Belt.
基金Sponsored by Talent Project of Tongling University(2021tlxyrc27).
文摘The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource productivity in the Yangtze River Delta(YRD)Region.From 2004 to 2018,there were notable variations in the ecological productivity of different types of land on basis of China’s equilibrium factor across the three provinces and one city in the YRD region.Jiangsu Province exhibited the highest ecological productivity of arable land,while Anhui Province exhibited the highest ecological productivity of forest land.Shanghai City exhibited the highest ecological productivity of pasture land,while Zhejiang Province exhibited the highest ecological productivity of water area.In 2018,the proportion of arable land within the total ecological carrying capacity of the YRD region reached 74.35%.Furthermore,the contribution of Jiangsu and Anhui provinces to the YRD’s total ecological carrying capacity was 41.36%and 41.26%,respectively.In the construction of a new development pattern in the YRD region,which is dominated by the domestic cycle as the main body and mutually reinforced by domestic and international double-cycle,the YRD region should combine the utilization of natural forces with innovation in science,technology and cooperation mechanisms.Furthermore,the government should guide the concentration of social capital towards green industries.It is also recommended that the moderate reduction of ecological footprints should be encouraged,and that the security of biological resources and energy,the leadership in the field of cutting-edge science and technology should be ensured in YRD region.This will facilitate the formation of a new development pattern of higher-quality integration at the national level firstly.
基金supported by the Chinese National Science Foundation under the Grant(30771650)the Key Programs of Science and Technology Commission Foundation of Shanghai(08391910200)+3 种基金Special Fund for Agroscientific Research in the Public Interest(201203065)Research Fund for the Doctoral Program of Higher Education of China(20070264001)E-class Programs of Shanghai Municipal Education Commission(E03009)the Key Subject Construction of Shanghai(S30701)
文摘The Yangtze River estuary is the main production area of Anguilla japonica in China,as well as the only existing fishery area for adult eels.Japanese eels are distributed in the main rivers and many tributaries from the Yangtze River estuary to the upper Jinsha River,which extend to nearly 3 000 km.However,their migration behaviors remain relatively unknown.We analyzed the biological characteristics of 153 specimens of silver eels collected from the Jingjiang section of Yangtze River(31o30'N,120o42'E) between September and November,2008,and tested the sagittal Sr/Ca ratios of 27 specimens.Among the 153 specimens examined,85 were female and 68 were male,which translated to a female-male ratio of 1:0.8.The ages of the female specimens ranged from 3 to 7 a(average 5.52) with an average total length(TL) of(669±80) mm,average body weight(BW) of(555±229)g,average condition factor of 1.77±0.22,and average gonad somatic index(GSI) of 1.32±0.31.The ages of the males ranged from 3 to 5 a(average:4.38) with an average TL of(518±51) mm,average BW of(234±76) g,average condition factor of 1.62±0.18,and average GSI of 0.21±0.11.All biological parameters of females were significantly larger than those of the male specimens(P0.05).According to the average Sr/Ca ratio(7.99±1.05) ×10-3 of the elver mark of sagitta,17 individuals(62.96%) were river eels and 10 individuals(37.04%) were estuarine eels.Of 16 females,13 individuals(81.25%) were river eels and 3 were estuarine eels,while of 11 males,36.36% were river eels and 63.64% were estuarine eels.The analysis on Sr/Ca ratios for every growth layer group(GLG) indicated there were no significant differences between second-age males and females.However,significant differences were observed between the third-age,fourth-age,and migration-age male and female specimens.This was likely related to the fact that second-age eels of both sexes stay in the same inhabitation waters;however,as they grow older,they move to different areas.
基金Supported by the R&D Special Fund for Public Welfare Industry(201203086)Special Financial Fund of Ministry of Agriculture(6125005)Central Public-interest Scientific Institution Basal Research Fund(2011JBFC04)~~
文摘Anchovies are migratory fish and adult individuals migrate in group from the sea into the river every year because of reproductive needs. TheYangtze River is the largest river in China, with rich food and fish species, hence, the Yangtze River would be an ideal habitat for growth and reproduction of anchovy. In this pa- per, based on fishing log data of anchovy in Jiangsu section of the Yangtze River, realted analysis was conducted in digital map using statistical software and GIS. From 2008 to 2011, the number of anchovy fishing vessels and fishing days in Jiangsu section remained stable, but the fishing volume and economic profit of single-vessel fluctuated constantly. This study provides references and advices for plan and management of anchovy fishery resource to administrative department.
文摘It is well known that, in most cases, soil water doesn't move in the form of laminar flow as described by Darcy law. Only when Reynolds number ( Re ) is no more than 10, does water movement follow Darcy law. A soil profile with 2 9 m long and 2 13 2 60 m deep was excavated on a lower slope located at Zigui County, Hubei Province, China. Field observation found that soil pipes were mainly distributed in the transient layer between horizon B with higher degree of granite weathering and horizon C with lower degree of granite weathering. At the foot of the slope, about 5 7 soil pipes per meter were observed along the vertical direction of the slope. The observed results, obtained by continuous observation of soil pipes and pipe flow processes at granite slope for many rainfall events, indicate that the relationship between velocity of pipe flow and hydraulic gradient along the pipe is parabolic rather than linear. Based on the investigated data of soil, landform, and land use etc., combined with observed data of pipe flow derived from many rainfall events, a pipe flow model was developed. For velocity V p, discharge Q p of pipe flow and radius r of soil pipe, great similarity was found between simulated and observed values. Particularly, the simulated length of soil pipes reflects the great difference among soil pipes as a result of its different position in the soil profile. The length values of 4 soil pipes were estimated to be 98 1%, 27 6%, 11 0% and 3 0% of the longest distance of the catchment, respectively. As a special case of water movement, soil pipe flow follows Darcy Weisbach law. Discharge of pipe flow is much greater than infiltration discharge in common. Only when the depth of groundwater is more than the diameter of soil pipe and water layer submerges soil pipes during rainfall, may pipe flow occur. Under these circumstances, discharge of pipe flow is directly proportional to the depth of groundwater.
基金Supported by Fishery Germplasm Conservation Project of the Ministry of Agriculture(MOA)(No.6115048)State Specific Project on Fundamental Scientific Research Financed to Public Institutes(No.2009JBFB10)~~
文摘[Objective] Surveys of phytoplankton were taken during the autumn of 2009 along Anhui-Jiangsu reaches of the Yangtze River to understand the species com- position and their spatial distributions. [Method] Phytoplankton species, their quanti- ties, biomass and the Mcnaughton's dominance indices were all measured and their spatial distribution characteristics were determined using cluster analysis. [Result] There were 27 species, belonging to 5 phyla, namely Chlorophyta, Bacillariophyta, Cyanophyta, Euglenophyta and Cryptophyta, of phytoplankton collected and identified from the surveys. Results showed that Bacillariophyta was the predominant phyto- plankton with 16 species collected which accounted for 59.3% of the total species identified. The number of species collected belonging to Chlorophyta, Cyanophyta, Cryptophyta and Euglenophyta were 6, 2, 2, and 1, accounting for 22.2%, 7.4%, 7.4% and 3.7% of the total number identified, respectively. At the species level, the predominant species were Fragilaria crotonensis, Melosira italica, Navicula crypto- cephala, Cyclotella striata and Chroomonas acuta. Phytoplankton abundance was ranging from 5.68×10^4 to 7.08×10^4 cells/L with its average of 6.01×10^4 cells/L. Phyto- plankton biomass was ranging from 30.43 to 34.73 μg/L with its average of 32.46 μg/L. Compared with the previous reports, the number of phytoplankton species was decreased but its abundance and biomass was increased along the Jiangsu reach of the Yangtze River. However, Bacillariophyta species were still the predominant species and the phytoplankton community structure had not significantly changed from the previous studies. [Conclusion] These results might be explained as that the water quality in the Yangtze River was deteriorated but had not come to the worst. The results of similarity analysis gave two clusters of phytoplankton community as Nanjing, Wuhu and Jiangyin sampling sites were clustered into one group and Tongling and Anqing were clustered into another group.