期刊文献+
共找到132,505篇文章
< 1 2 250 >
每页显示 20 50 100
On the Thermal Distribution in Oncological Hyperthermia Treatments
1
作者 Andras Szasz 《Open Journal of Biophysics》 2024年第2期239-263,共25页
The temperature is one of the principal controlling parameters of oncological hyperthermia. However, local heating forms a complicated thermal distribution in space and has developed over time, too. The decisional fac... The temperature is one of the principal controlling parameters of oncological hyperthermia. However, local heating forms a complicated thermal distribution in space and has developed over time, too. The decisional factors are the heterogeneity of the targeted volume, the electrolyte perfusions controlled by thermal homeostasis, and the spreading of the heat energy with time. A further complication is that the energy absorption sharply changes by depth, so the spatiotemporal development of the temperature distribution requires specialized methods to control. Most of the temperature imaging facilities (thermography, radiometry, electric impedance tomography, etc.) are less precise than the medical practice needs. In contrast, precise point sensing (like thermocouples, thermistors, and fluoroptical methods) is invasive and measures only a discrete point in the robustly changing thermal map. The two most precise thermal imaging methods, computer tomography, and magnetic resonance are expensive and have numerous technical complications. Our objective is to show the complexity of the temperature distribution inside the human body, and offer a relatively simple and cheap method to visualize its spatiotemporal development. A novel emerging technology, the application of ultrasound microbubble contrast agents is a promising method for solving complicated tasks of thermal distribution deep inside the living body. Noteworthy, the temperature distribution does not determine the full hyperthermia process, nonthermal effects make considerable impact, too. Additionally to the difficulties to measure the thermal heterogeneity during hyperthermia in oncology, numerous nonthermal processes, molecular and structural changes are triggered by the incoming electromagnetic energy, which presently has no spatiotemporal visualization technique. Microbubble imaging has a suitable spatiotemporal thermal resolution, and also it is sensitive to nonthermal effects. Its application for characterization of the modulated electrohyperthermia (mEHT) may open a new theranostic facility, using the synergy of the thermal and nonthermal effects of the radiofrequency delivered energy. This complex approach gives facility to follow the mEHT processes, and the proposed microbubble ultrasound imaging has a particularly promising advantage sensing and acting also nonthermally, having potential to characterize the thermally conditioned nonthermal electromagnetic effects in oncologic hyperthermia. The mEHT combined with microbubble ultrasound images could be a robust theranostic method against cancer. 展开更多
关键词 MICROBUBBLES thermal Heterogeneity Electric Heterogeneity BLOODSTREAM thermal and Nonthermal Synergy Temperature Distribution Temperature Measurements
下载PDF
Effect of Dietary Components on the Shear Bond Strength of Orthodontics Brackets after Thermal Aging
2
作者 Philip Punzalan Tanya Al Talib +1 位作者 Anthony Fusco Neamat Hassan Abubakr 《Open Journal of Stomatology》 2024年第6期309-315,共7页
Introduction: The stability of orthodontic brackets throughout orthodontic treatment plays a critical role in the treatment’s effectiveness. The present in vitro study was designed to assess the impact of various die... Introduction: The stability of orthodontic brackets throughout orthodontic treatment plays a critical role in the treatment’s effectiveness. The present in vitro study was designed to assess the impact of various dietary components on the performance of orthodontic brackets. Methods: Metal orthodontic brackets were bonded to 66 extracted anterior teeth divided into groups based on the solution type: Milk, Gatorade, Cold Coffee, and a control group using water. Each group consisted of 20 teeth except for the control group, which included six teeth. The bracketed teeth were submerged in their respective solutions for 15 minutes three times daily at different intervals to mimic an in vivo environment and were stored in artificial saliva at room temperature (23?C). The specimens underwent artificial aging through 10,000 cycles of thermocycling (representing one clinical year) between 5?C and 55?C. Shade measurements were taken using a VITA Easy Shade device, capturing the classic shade and L*, a*, and b* values. Delta E values were calculated immediately post-bonding and after 7 days, 1 month, 1, and 2 clinical years. The shear bond strength of each bracket was measured using an ultra-tester machine. Results: After two clinical years, significant differences in ΔE color values were observed across all groups, with the most substantial change noted in teeth immersed in cold coffee. Brackets submerged in milk demonstrated lower shear bond strength than other solutions, whereas the control group exhibited the highest shear bond strength (P = 0.01). Conclusion: The study indicates that dietary components significantly influence tooth color stability and the shear bond strength of orthodontic brackets, underscoring the importance of considering these factors in orthodontic treatment planning. 展开更多
关键词 Shear Bond Orthodontic Brackets Color Stability thermal Aging
下载PDF
Further Analysis of Machine Tool Dimensional Accuracy and Thermal Stability under Varying Floor Temperature
3
作者 Joel Arumun Shadrack Abiola 《World Journal of Engineering and Technology》 2024年第2期258-273,共16页
Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s d... Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s dimensional accuracy. This paper is a continuation of our earlier work, which aimed to analyze the effect of the internal temperature of a machine tool as the machine is put into operation and vary the external temperature, the machine floor temperature. Some experiments are carried out under controlled conditions to study how machine tool components get heated up and how this heating up affects the machine’s accuracy due to thermally induced deviations. Additionally, another angle is added by varying the machine floor temperature. The parameters mentioned above are explored in line with the overall thermal stability of the machine tool and its dimensional accuracy. A Robodrill CNC machine tool is used. The CNC was first soaked with thermal energy by gradually raising the machine floor temperature to a certain level before putting the machine in operation. The machine was monitored, and analytical methods were deplored to evaluate thermal stability. Secondly, the machine was run idle for some time under raised floor temperature before it was put into operation. Data was also collected and analyzed. It is observed that machine thermal stability can be achieved in several ways depending on how the above parameters are joggled. This paper, in conclusion, reinforces the idea of machine tool warm-up process in conjunction with a carefully analyzed and established machine floor temperature variation for the approximation of the machine tool’s thermally stability to map the long-time behavior of the machine tool. 展开更多
关键词 Dimensional Accuracy Machine Tool Machine Floor thermal Stability TEMPERATURE thermal Deviation
下载PDF
Static and Thermal Analysis of Aluminium (413,390,384 and 332) Piston Using Finite Element Method
4
作者 Offei David Inusah Jacob Kwaku Nkrumah Vincent Akolbire Atindana 《Modeling and Numerical Simulation of Material Science》 2024年第1期1-38,共38页
The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Aut... The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders. 展开更多
关键词 Von Mise stress Total deformation Aluminium alloy thermal analysis. PISTON Static structural Heat fux
下载PDF
Fabrication and Characterization of Bamboo—Epoxy Reinforced Composite for Thermal Insulation
5
作者 Nandavardhan Reddy Kopparthi Jens Schuster Yousuf Pasha Shaik 《Open Journal of Composite Materials》 2024年第1期15-32,共18页
As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime ca... As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime candidate for reinforcement. This woody plant offers inherent strengths, biodegradability, and abundant availability. Due to its high cellulose content, its low thermal conductivity establishes bamboo as a thermally resistant material. Its low thermal conductivity, enhanced by a NaOH solution treatment, makes it an excellent thermally resistant material. Researchers incorporated Hollow Glass Microspheres (HGM) and Kaolin fillers into the epoxy matrix to improve the insulating properties of bamboo composites. These fillers substantially enhance thermal resistance, limiting heat transfer. Various compositions, like (30% HGM + 25% Bamboo + 65% Epoxy) and (30% Kaolin + 25% Bamboo + 45% Epoxy), were compared to identify the most efficient thermal insulator. Using Vacuum Assisted Resin Transfer Molding (VARTM) ensures uniform distribution of fillers and resin, creating a structurally sound thermal barrier. These reinforced composites, evaluated using the TOPSIS method, demonstrated their potential as high-performance materials combating heat transfer, offering a promising solution in the battle against climate change. 展开更多
关键词 thermal Insulator Rooftiles Hollow Glass Microspheres BAMBOO KAOLIN EPOXY VARTM Process thermal Conductivity Mechanical Properties
下载PDF
Optimisation of Thermal Comfort of Building in a Hot and Dry Tropical Climate: A Comparative Approach between Compressed Earth/Concrete Block Envelopes
6
作者 Arnaud Louis Sountong-Noma Ouedraogo Césaire Hema +2 位作者 Sjoerd Moustapha N’guiro Philbert Nshimiyimana Adamah Messan 《Journal of Minerals and Materials Characterization and Engineering》 2024年第1期1-16,共16页
Compressed earth blocks (CEB) are an alternative to cement blocks in the construction of wall masonry. However, the optimal architectural construction methods for adequate thermal comfort for occupants in hot and arid... Compressed earth blocks (CEB) are an alternative to cement blocks in the construction of wall masonry. However, the optimal architectural construction methods for adequate thermal comfort for occupants in hot and arid environments are not mastered. This article evaluates the influence of architectural and constructive modes of buildings made of CEB walls and concrete block walls, to optimize and compare their thermal comfort in the hot and dry tropical climate of Ouagadougou, Burkina Faso. Two identical pilot buildings whose envelopes are made of CEB and concrete blocks were monitored for this study. The thermal models of the pilot buildings were implemented in the SketchUp software using an extension of EnergyPlus. The models were empirically validated after calibration against measured thermal data from the buildings. The models were used to do a parametric analysis for optimization of the thermal performances by simulating plaster coatings on the exterior of walls, airtight openings and natural ventilation depending on external weather conditions. The results show that the CEB building displays 7016 hours of discomfort, equivalent to 80.1% of the time, and the concrete building displays 6948 hours of discomfort, equivalent to 79.3% of the time. The optimization by modifications reduced the discomfort to 2918 and 3125 hours respectively;i.e. equivalent to only 33.3% for the CEB building and 35.7% for the concrete building. More study should evaluate thermal optimizations in buildings in real time of usage such as residential buildings commonly used by the local middle class. The use of CEB as a construction material and passive means of improving thermal comfort is a suitable ecological and economical option to replace cementitious material. 展开更多
关键词 Compressed Earth Blocks Hot and Dry Climate thermal Comfort Architectural Optimization of thermal Models Cement Blocks Empirical Validation
下载PDF
Experimental Study of the Influence of Intrinsic Parameters on the Thermal Reactivity of Sawdust, Polyethylene Terephthalate and Composite
7
作者 Ange Brel Boukongou Timoléon Andzi Barhé 《Journal of Materials Science and Chemical Engineering》 2024年第3期9-20,共12页
Several works have been based on the study of thermal variations in biomass to derive more valuable products such as fuels capable of replacing oil in the event of a crisis or activated carbon used as an adsorbent mat... Several works have been based on the study of thermal variations in biomass to derive more valuable products such as fuels capable of replacing oil in the event of a crisis or activated carbon used as an adsorbent material, widely used in industry for the elimination of unwanted materials, both in liquid and gaseous environments. A study of thermal parameters such as: heating speed, retention time, drying temperature, carbonization temperature, particle size, was carried out with the aim of determining the characteristic factors of the carbonization of Polyethylene terephthalate (PET), sawdust (SC) and sawdust/polyethylene terephthalate (CPS) mixture. The results of the immediate analysis revealed a very low level of ash in PET (0.013%) compared to the level of ash in sawdust (2.9%), as well as a high level of fixed carbon (82.960%), which suggests the presence of mineral oxides and a significant carbon matrix unlike PET, which indicates a very significant organic matrix (essentially made up of organic matter) with the absence of mineral oxides. The study of thermal parameters showed the water loss from Sawdust (SC) and the Sawdust/Polyethylene terephthalate (CPS) mixture, an increase with temperature, unlike that of PET whose variation is essentially zero. Without heat treatment, sawdust alone contains approximately 7% water. The optimal drying temperature for this study is 110˚C for a stay of 24 hours. It appears that the largest mass losses for the PET samples are between 87.19% and 96.05%, followed by that of the mixture, between 47.33% and 64.37%. And the lowest are observed, those of sawdust (from 24.02% to 62.6%). However, here we can say that the influence of the mass is not great, given the slight difference between the losses by temperature. The results of the study of the influence of grain size showed that the differences are insignificant, even if we vary the diameter of the grains from simple to triple. To better minimize physical constraints such as the intragranular diffusibility of the volatile matter and the homogeneity of the temperature in the grains, 75 μm particles are found to be optimal for our study. It can be noted when studying the heating rate that the mass loss at the end of the reaction is approximately the same depending on each precursor material. However, it has been demonstrated that the heating rate strongly influences the nature of the reaction products both for volatile materials and for the solid residue as well as on the kinetic parameters of the chemical reaction. Furthermore, the variation in apparent density shows a decrease as a function of the increase in the residence time of the materials in the reactor. As the carbonization time increases, the apparent density decreases. We note, for the lignocellulosic material, that the apparent density stabilizes after 60 minutes. 展开更多
关键词 Intrinsic Parameters thermal Reactivity SAWDUST Polyethylene Terephthalate COMPOSITE
下载PDF
Numerical Assessment of the Thermal Efficiency of a Concentrated Photovoltaic/Thermal (CPV/T) Hybrid System Using Air as Heat Transfer Fluid
8
作者 Amadou Konfe Boureima Kabore +2 位作者 Yves Christian Nonguierma Fatimata Ouedraogo Sié Kam 《Smart Grid and Renewable Energy》 2024年第1期1-14,共14页
In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air... In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air as the cooling fluid. This enabled us to evaluate some of the parameters influencing the electrical and thermal performance of this device. The results showed that the temperature, thermal efficiency and electrical efficiency delivered depend on the air mass flow rate. The electrical and thermal efficiencies for different values of air mass flow are encouraging, and demonstrate the benefits of cooling photovoltaic cells. The results show that thermal efficiency decreases air flow rate greater than 0.7 kg/s, whatever the value of the light concentration used. The thermal efficiency of the solar cell increases as the light concentration increases, whatever the air flow rate used. For a concentration equal to 30 sun, the thermal efficiency is 0.16 with an air flow rate equal to 0.005 kg/s;the thermal efficiency increases to 0.19 with an air flow rate equal to 0.1 kg/s at the same concentration. An interesting and useful finding was that the proposed numerical model allows the determination of the electrical as well as thermal efficiency of the hybrid CPV/T with air flow as cooling fluid. 展开更多
关键词 PV Cell CONCENTRATING thermal Energy Conversion COOLING Hybrid System
下载PDF
Adverse Pregnancy Outcomes Following Cryotherapy, Thermal Ablation and Loop Electrosurgical Excision Procedure for Cervical Intraepithelial Neoplasia Treatment: A Pilot Study among Zambian Women
9
作者 Victoria Mwiinga-Kalusopa Johanna E. Maree +1 位作者 Concepta Kwaleyela Patricia Katowa-Mukwato 《Open Journal of Obstetrics and Gynecology》 2024年第1期7-17,共11页
Background: Cervical Intraepithelial neoplasia treatments have become essential interventions to manage cervical lesions. Majority of the recipients of these treatments are women within the reproductive age group, who... Background: Cervical Intraepithelial neoplasia treatments have become essential interventions to manage cervical lesions. Majority of the recipients of these treatments are women within the reproductive age group, who according to literature may be at risk of adverse pregnancy outcomes. This pilot study is part of a study investigating adverse pregnancy outcomes among women who received Cryotherapy, Thermal ablation and Loop Electrosurgical Excision Procedure compared to the untreated women in Zambia. Materials and Methods: This descriptive study analyzed records of 886 (n = 443 treated and n = 443 untreated) women aged 15 - 49 years. The women were either screened with Visual Inspection with Acetic Acid or treated for Cervical Intraepithelial neoplasia at the Adult Infectious Disease Centre between January 2010 and December 2020. Women meeting the criteria were identified using the Visual Inspection with Acetic Acid screening records and telephone interviews to obtain the adverse pregnancy outcome experienced. Data were analysed using STATA version 16 to determine the prevalence and obtain frequency distribution of outcomes of interest. Univariate and multivariable binary logistic regression estimated odds of adverse pregnancy outcomes across the three treatments. Results: The respondents were aged 15 to 49 years. Adverse pregnancy outcomes were observed to be more prevalent in the treatment group (18.5%) compared to the untreated group (5.4%). Normal pregnancy outcomes were lower in the treated (46.3%;n = 443) than the untreated (53.7%;n = 443). The treated group accounted for the majority of abortions (85.2%), prolonged labour (85.7%) and low birth weight (80%), whereas, the untreated accounted for the majority of still births (72.7%). Women treated with cryotherapy (aOR = 2.43, 95% CI = 1.32 - 4.49, p = 0.004), thermal ablation (aOR = 6.37, 95% CI = 0.99 - 41.2, p = 0.052) and Loop Electrosurgical Excision Procedure (aOR = 9.67, 95% CI = 2.17 - 43.1, p = 0.003) had two-, six- and ten-times higher odds of adverse pregnancy outcomes respectively, relative to women who required no treatment. Conclusion: Adverse pregnancy outcomes are prevalent among women who have received treatment in Zambia. The findings indicate that treating Cervical Intraepithelial Neoplasia has been linked to higher chances of experiencing abortion, delivering low birth weight babies and enduring prolonged labor that may result in a caesarean section delivery. Cervical neoplasia treatments, particularly Loop Electrosurgical Excision Procedure, are associated with significantly increased odds of adverse pregnancy outcomes. It is essential to include information about prior Cervical Intraepithelial neoplasia treatment outcomes in obstetric care. 展开更多
关键词 Adverse Pregnancy Outcomes Cervical Intraepithelial Neoplasia Cryothera-py thermal Ablation Loop Electrosurgical Excision Procedure PILOT Repro-ductive Age
下载PDF
Thermal Performance Analysis of Plaster Reinforced with Raffia Vinifera Particles for Use as Insulating Materials in Building
10
作者 Etienne Malbila Danielle Manuella Djouego Tagne +3 位作者 Bouto Kossi Imbga Lareba Adelaide Ouedraogo Sié Kam David Yemboini Kader Toguyeni 《Journal of Minerals and Materials Characterization and Engineering》 2024年第2期112-138,共27页
The present study focuses on the formulation of new composite consisting of plaster and raffia vinifera particle (RVP) with the purpose to reducing energy consumption. The aim of this study is to test this new compoun... The present study focuses on the formulation of new composite consisting of plaster and raffia vinifera particle (RVP) with the purpose to reducing energy consumption. The aim of this study is to test this new compound as an insulating eco-material in building in a tropical climate. The composites samples were developed by mixing plaster with raffia vinifera particles (RVP) using three different sizes (1.6 mm, 2.5 mm and 4 mm). The effects of four different RVP incorporations rates (i.e., 0wt%, 5wt%;10wt%;15wt%) on physical, thermal, mechanicals properties of the composites were investigated. In addition, the use of the raffia vinifera particles and plaster based composite material as building envelopes thermal insulation material is studied by the habitable cell thermal behavior instrumentation. The results indicate that the incorporation of raffia vinifera particle leads to improve the new composite physical, mechanical and thermal properties. And the parametric analysis reveals that the sampling rate and the size of raffia vinifera particles are the most decisive factor to impact these properties, and to decreases in the thermal conductivity which leads to an improvement to the thermal resistance and energy savings. The best improvement of plaster composite was obtained at the raffia vinifera particles size between 2.5 and 4.0 mm loading of 5wt% (C95P5R) with a good ratio of thermo-physical-mechanical properties. Additionally, the habitable cell experimental thermal behavior, with the new raffia vinifera particles and plaster-based composite as thermal insulating material for building walls, gives an average damping of 4°C and 5.8°C in the insulated house interior environment respectively for cold and hot cases compared to the outside environment and the uninsulated house interior environment. The current study highlights that this mixture gives the new composite thermal insulation properties applicable in the eco-construction of habitats in tropical environments. 展开更多
关键词 Fibres PLASTER thermal Test Mechanical Test Insulating Material Indoor Comfort
下载PDF
Effects of Anthropogenic CO2 and Thermally-Induced CO2 on Global Warming
11
作者 Masaharu Nishioka 《Atmospheric and Climate Sciences》 2024年第3期317-327,共11页
Changes in CO2 and temperature are correlated, but it is difficult to observe which is the cause and which is the effect. The release of CO2 dissolved in the ocean into the atmosphere depends on the atmospheric temper... Changes in CO2 and temperature are correlated, but it is difficult to observe which is the cause and which is the effect. The release of CO2 dissolved in the ocean into the atmosphere depends on the atmospheric temperature. However, examining the relationship between changes in CO2 caused by other phenomena and temperature is difficult. Studies of soil respiration (Rs) since the late 20th century have shown that CO2 emissions from soil respiration (Rs) are overwhelmingly greater than CO2 emissions from fossil fuel combustion. This is also noted in the IPCC carbon budget assessment. In this paper, the dependences of Rs on temperature, time, latitude, precipitation, seasons, etc., were investigated using the latest NASA database. The changes in temperature and Rs correlated well. There is also a good correlation between Rs and CO2 generation. Therefore, an increase in temperature results in an increase in CO2. On the other hand, there is no evidence other than model calculations that an increase in anthropogenic CO2 is mainly linked to a rise in temperature. The idea that global warming is caused by anthropogenic CO2 production is still a hypothesis. For these reasons, the relationship between global warming and anthropogenic CO2 should be reconsidered based on physical evidence without preconceptions. . 展开更多
关键词 Global Warming Anthropogenic CO2 thermally-Induced CO2 Soil Respiration Carbon Cycles
下载PDF
Real Time Thermal Image Based Machine Learning Approach for Early Collision Avoidance System of Snowplows
12
作者 Fletcher Wadsworth Suresh S. Muknahallipatna Khaled Ksaibati 《Journal of Intelligent Learning Systems and Applications》 2024年第2期107-142,共36页
In an effort to reduce vehicle collisions with snowplows in poor weather conditions, this paper details the development of a real time thermal image based machine learning approach to an early collision avoidance syst... In an effort to reduce vehicle collisions with snowplows in poor weather conditions, this paper details the development of a real time thermal image based machine learning approach to an early collision avoidance system for snowplows, which intends to detect and estimate the distance of trailing vehicles. Due to the operational conditions of snowplows, which include heavy-blowing snow, traditional optical sensors like LiDAR and visible spectrum cameras have reduced effectiveness in detecting objects in such environments. Thus, we propose using a thermal infrared camera as the primary sensor along with machine learning algorithms. First, we curate a large dataset of thermal images of vehicles in heavy snow conditions. Using the curated dataset, two machine-learning models based on the modified ResNet architectures were trained to detect and estimate the trailing vehicle distance using real-time thermal images. The trained detection network was capable of detecting trailing vehicles 99.0% of the time at 1500.0 ft distance from the snowplow. The trained trailing distance network was capable of estimating distance with an average estimation error of 10.70 ft. The inference performance of the trained models is discussed, along with the interpretation of the performance. 展开更多
关键词 Convolutional Neural Networks Residual Networks Object Detection Image Processing thermal Imaging
下载PDF
Composite Panels from the Combination of Rice Husk and Wood Chips with a Natural Resin Based on Tannins Reinforced with Sugar Cane Molasses Intended for Building Insulation: Physico-Mechanical and Thermal Properties
13
作者 Paul Nestor Djomou Djonga Rosellyne Serewane Deramne +2 位作者 Gustave Assoualaye Ahmat Tom Tégawendé Justin Zaida 《Journal of Materials Science and Chemical Engineering》 2024年第2期19-30,共12页
The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips an... The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips and husks are materials which can have good thermal conductivity and therefore the combination of these precursors could make it possible to obtain panels with good insulating properties. With regard to environmental and climatic constraints, the composite panels formulated at various rates were tested and the physico-mechanical and thermal properties showed that it was essential to add a crosslinker in order to increase certain solicitation. an incorporation rate of 12% to 30% made it possible to obtain panels with low thermal conductivity, a low surface water absorption capacity and which gives the composite good thermal insulation and will find many applications in the construction and real estate sector. Finally, new solutions to improve the fire reaction of the insulation panels are tested which allows to identify suitable solutions for the developed composites. In view of the flame tests, the panels obtained are good and can effectively combat fire safety in public buildings. 展开更多
关键词 Composite Panels Tannins Reinforced Sugar Cane Molasses Building Insulation Mechanical and thermal Properties
下载PDF
Comprehensive Examination of Solar Panel Design: A Focus on Thermal Dynamics
14
作者 Kajal Sheth Dhvanil Patel 《Smart Grid and Renewable Energy》 2024年第1期15-33,共19页
In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is con... In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is constrained by certain limitations. Notably, the efficiency of solar PV modules on the ground peaks at a maximum of 25%, and there are concerns regarding their long-term reliability, with an expected lifespan of approximately 25 years without failures. This study focuses on analyzing the thermal efficiency of PV Modules. We have investigated the temperature profile of PV Modules under varying environmental conditions, such as air velocity and ambient temperature, utilizing Computational Fluid Dynamics (CFD). This analysis is crucial as the efficiency of PV Modules is significantly impacted by changes in the temperature differential relative to the environment. Furthermore, the study highlights the effect of airflow over solar panels on their temperature. It is found that a decrease in the temperature of the PV Module increases Open Circuit Voltage, underlining the importance of thermal management in optimizing solar panel performance. 展开更多
关键词 Solar Photovoltaic (PV) Modules thermal Efficiency Analysis Open Circuit Voltage Computational Fluid Dynamics (CFD) Solar Panel Temperature Profile
下载PDF
Development of Morus alba Reinforced Poly-Lactic Acid with Elevated Mechanical and Thermal Properties
15
作者 Girish Kumar Reddy Madda Jens Schuster Yousuf Pasha Shaik 《Materials Sciences and Applications》 2024年第7期186-200,共15页
This research investigates the mechanical and thermal properties of Morus alba combined with polylactic acid in comparison with other natural fibers. The study uses three different fiber and PLA compositions - 20%, 30... This research investigates the mechanical and thermal properties of Morus alba combined with polylactic acid in comparison with other natural fibers. The study uses three different fiber and PLA compositions - 20%, 30%, and 40% respectively - to produce composite materials. In addition, another composite with the same fiber volume is treated with a 4% NaOH solution to improve mechanical properties. The composites are processed by twin-screw extrusion, granulation, and injection molding. Tensile strength measurements of raw fibers and NaOH-treated fibers were carried out using a single-fiber tensile test with a gauge length of 40 mm. It was observed that the NaOH surface treatment increases the resistance against tensile loading and exhibited improved properties for raw fiber strands. The diameter of the fibers was measured using optical microscopy. During this research, flexural tests, impact tests, differential scanning calorimetry (DSC), and heat deflection temperature measurements (HDT) were conducted to evaluate the mechanical and thermal properties of the developed composite samples. The results indicate that the mechanical properties of NaOH-treated Morus alba-reinforced polylactic acid outperform both virgin PLA samples and untreated Morus alba samples. 展开更多
关键词 Morus Alba Fiber (MAF) White Mulberry Polylactic Acid (PLA) Sodium Hydroxide (NaOH) Solution Single Fiber Tensile Test thermal Stability Optical Microscopy
下载PDF
Revisiting “Non-Thermal” Batch Microwave Oven Inactivation of Microorganisms
16
作者 Victor John Law Denis Pius Dowling 《American Journal of Analytical Chemistry》 CAS 2023年第1期28-54,共27页
Over the last few decades there has been active discussion concerning the mechanisms involved in “non-thermal” microwave-assisted inactivation of microorganisms. This work presents a novel non-invasive acoustic meas... Over the last few decades there has been active discussion concerning the mechanisms involved in “non-thermal” microwave-assisted inactivation of microorganisms. This work presents a novel non-invasive acoustic measurement of a domestic microwave oven cavity-magnetron operating at f<sub>o</sub> = 2.45 ± 0.05 GHz (λ<sub>o</sub> ~ 12.2 cm) that is modulated in the time-domain (0 to 2 minutes). The measurements reveal the cavity-magnetron cathode filament cold-start warm-up period and the pulse width modulation periods (time-on time-off and base-time period, where time-on minus base-time = duty cycle). The waveform information is used to reconstruct historical microwave “non-thermal” homogeneous microorganism inactivation experiments: where tap-water is used to mimic the microorganism suspension;and ice, crushed ice, and ice slurry mixture are used as the cooling media. The experiments are described using text, diagrams, and photographs. Four key experimental parameters are indentified that influence the suspension time-dependent temperature profile. First, where the selected process time > the time-base, the cavity-magnetron continuous wave rated power should be used for each second of microwave illumination. Second, external crushed ice and ice slurry baths induce different cooling profiles due to difference in their heat absorption rates. In addition external baths may shield the suspension resulting in a retarding of the time-dependent heating profile. Third, internal cooling systems dictate that the suspension is directly exposed to microwave illumination due to the absence of surrounding ice volume. Fourth, four separated water dummy-loads isolate and control thermal heat transfer (conduction) to and from the suspension, thereby diverting a portion of the microwave power away from the suspension. Energy phase-space projections were used to compare the “non-thermal” energy densities of 0.03 to 0.1 kJ·m<sup>-1</sup> at 800 W with reported thermal microwave-assisted microorganism inactivation energy densities of 0.5 to 5 kJ·m<sup>-1</sup> at 1050 ± 50 W. Estimations of the “non-thermal” microwave-assisted root mean square of the electric field strength are found to be in the range of 22 to 41.2 V·m<sup>-1</sup> for 800 W. 展开更多
关键词 thermal NON-thermal MICROWAVE-ASSISTED Microwave Oven Acoustic FOOD MICROORGANISMS
下载PDF
海上稠油油田多元热流体吞吐增产机理研究与实践 被引量:1
17
作者 梅伟 郑立朝 +6 位作者 张建亮 林珊珊 仝春玥 王庆涛 刘畅 江群 戴金明 《当代化工》 CAS 2024年第3期650-654,659,共6页
多元热流体为蒸汽、氮气、二氧化碳的高温高压混合气体,具有降低稠油黏度、提高地层压力、改善油藏剖面、提高稠油油藏开发效果等作用。多元热流体吞吐技术在海上稠油高效开发中应用广泛,随吞吐轮次增加,对多元热流体吞吐机理缺乏认知,... 多元热流体为蒸汽、氮气、二氧化碳的高温高压混合气体,具有降低稠油黏度、提高地层压力、改善油藏剖面、提高稠油油藏开发效果等作用。多元热流体吞吐技术在海上稠油高效开发中应用广泛,随吞吐轮次增加,对多元热流体吞吐机理缺乏认知,开采效果降低。为有效提升稠油油田的开采效果,采用油藏模拟分析和多元热流体吞吐及驱替室内试验方法,探究了不同多元热流体组分对增产的贡献,进一步明晰多元热流体吞吐增产机理,为多元热流体热采方案优化设计和吞吐后开发调整提供理论指导和有效措施。试验结果表明:海上油田通过多元热流体热采示范应用,油田日产油由热采前218m^(3)·d^(-1)升至最高641m^(3)·d^(-1),增幅195%,热采效果明显。 展开更多
关键词 稠油热采 多元热流体吞吐 室内实验 增产机理
下载PDF
大缸径柴油机燃烧系统优化模拟 被引量:1
18
作者 李成 田华 +2 位作者 黄永仲 隆武强 陈秉智 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第1期25-31,共7页
为提高某缸径200 mm船用发电柴油机的燃油经济性,本文设计了活塞燃烧室和燃油喷射系统的升级方案并进行了模拟优化。升级方案提高了压缩比和燃油喷射压力,采用大径深比浅ω燃烧室配合158°喷油夹角喷油嘴。对不同方案下发动机的缸... 为提高某缸径200 mm船用发电柴油机的燃油经济性,本文设计了活塞燃烧室和燃油喷射系统的升级方案并进行了模拟优化。升级方案提高了压缩比和燃油喷射压力,采用大径深比浅ω燃烧室配合158°喷油夹角喷油嘴。对不同方案下发动机的缸内工作过程进行了计算流体力学模拟,计算了高压指示功和放热率相位,分析了缸内温度、反应过量空气系数和速度分布及演化。模拟结果表明:升级方案能够提高发动机热效率。增加喷孔数并减小孔径,可以在保持NOx排放基本不变的条件下提高高压指示功4.5%,降低碳烟排放约60%。采用“平顶”浅ω燃烧室与158°喷油夹角喷雾配合,油气混合气快速进入余隙并形成逆时针的漩涡流动,能够加速油气混合和燃烧过程,提高热效率。 展开更多
关键词 柴油机 燃油经济性 燃烧室 燃油喷射 模拟 优化 热效率 氮氧化物 碳烟
下载PDF
基于进气节流耦合后喷策略的柴油机排气热管理 被引量:2
19
作者 黄粉莲 朱玉 +3 位作者 万明定 申立忠 彭益源 夏大双 《农业工程学报》 EI CAS CSCD 北大核心 2024年第2期196-207,共12页
为研究柴油机颗粒物捕集器(diesel particulate filter,DPF)再生升温过程中排气热管理策略对柴油机氧化催化器(diesel oxidation catalyst,DOC)入口温度、发动机性能及污染物排放的影响,该研究分别选取低速低负荷、低速中负荷及中速低... 为研究柴油机颗粒物捕集器(diesel particulate filter,DPF)再生升温过程中排气热管理策略对柴油机氧化催化器(diesel oxidation catalyst,DOC)入口温度、发动机性能及污染物排放的影响,该研究分别选取低速低负荷、低速中负荷及中速低负荷工况,通过试验研究进气节流和喷油控制参数对DOC入口温度、燃油经济性及排放性能的影响。试验结果表明:通过进气节流、推迟后喷正时和增大后喷油量能够有效提高DOC入口温度,主喷正时和喷油压力对DOC入口温度的影响较小。基于Box-Behnken试验设计与响应曲面法对低速低负荷工况下进气节流耦合后喷策略的排气热管理策略进行多目标优化,以进气量、后喷正时和后喷油量为因子,DOC入口温度、有效燃油消耗率(brake specific fuel consumption,BSFC)、氮氧化合物(nitrogen oxides,NOx)和烟度排放为优化目标。响应曲面分析结果表明:各因素对DOC入口温度的影响程度从大到小为进气量、后喷油量、后喷正时;对BSFC和NOx排放的影响程度从大到小为后喷油量、后喷正时、进气量;对烟度排放的影响程度从大到小为进气量、后喷油量、后喷正时。当后喷正时为上止点后30℃A、进气量为87 kg/h、后喷油量为6 mg时,DOC入口温度达到最高,此时BSFC为275.4 g/(kW·h),NOx及烟度排放分别为7.38 g/(kW·h)和1.85 mg/m^(3)。优化后最佳进气量、后喷正时和后喷油量分别为87 kg/h、29℃A和5.4 mg,与优化前相比,DOC入口温度提升43.9℃,BSFC增加31.8 g/(kW·h),NOx和烟度排放分别降低18%和29%。研究结果可为DOC入口温度优化控制提供参考。 展开更多
关键词 柴油机 优化 氧化催化器 排气热管理 响应曲面法
下载PDF
稠油开采中多元热复合流体相态的研究进展 被引量:1
20
作者 李洪毅 黄致新 +3 位作者 唐亮 魏超平 吴光焕 尹小梅 《油气地质与采收率》 CAS CSCD 北大核心 2024年第1期87-102,共16页
稠油的储量远超常规石油的储量,但因稠油黏度大和密度大的特点而难以开采,高效经济开发稠油已成为石油领域的研究重点。热复合开采技术是目前高效开发稠油油藏的关键技术,其中多元热复合流体的相态特征是稠油油藏开采流程设计与评价的... 稠油的储量远超常规石油的储量,但因稠油黏度大和密度大的特点而难以开采,高效经济开发稠油已成为石油领域的研究重点。热复合开采技术是目前高效开发稠油油藏的关键技术,其中多元热复合流体的相态特征是稠油油藏开采流程设计与评价的关键。为此,从热复合开采技术中的混合气体系和稠油-气体系2个方面,系统地阐述了多元热复合流体相态的实验和理论研究现状。对于混合气体系相态,多采用静态法进行实验测试,使用状态方程结合混合规则进行理论预测,CO_(2),N_(2),H_(2)O和CH_(4)等常见气体分子组成的二元体系的相态测试趋于成熟,但缺少多元体系的测试数据与预测模型;对于稠油-气体系相态,总结了一般性实验流程与近年实验结果,提出一种加速油气相平衡的新型实验装置构想,指出目前理论预测在气体种类、注气量、气体扩散模型、二元相互作用系数等方面的不足。进而对多元热复合流体相态研究提出展望,以期促进热复合开采技术进一步的机理研究与参数优化。 展开更多
关键词 热复合开采 混合流体 稠油开采 相态特征 热力学性质
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部