Tree canopies influence atmospheric pollutant depositions depending on type,ecosystem characteristics,and local climatic conditions.This study investigated the impact of Pinus sylvestris L.and Picea abies(L.)H.Karst.,...Tree canopies influence atmospheric pollutant depositions depending on type,ecosystem characteristics,and local climatic conditions.This study investigated the impact of Pinus sylvestris L.and Picea abies(L.)H.Karst.,and a mixture of both,on the chemical composition of pre-cipitation.Three permanent plots within the ICP forest level Ⅱ monitoring network in Lithuania were selected to illustrate typical hemiboreal coniferous forests.The study analysed(1)the concentrations of NO_(2),NH_(3) and SO_(2) in the ambi-ent air;(2)the concentrations of SO_(4)^(2−),NO_(3)^(−),NH_(4)^(+),Na^(+),K^(+),Ca^(2+) and Cl^(-) in throughfall beneath canopies and in precipitation collected in an adjacent field,and(3)S and total N,Na^(+),K^(+),Ca^(2+)and Cl−depositions in throughfall and precipitation over 2006-2022.Results show a signifi-cant decrease in SO_(2) emissions in the ambient air;NO_(2) and NH_(3) emissions also decreased.The canopies reduced the acidity of throughfall,although they led to notably higher concentrations of SO_(4)^(2−),NO_(3)^(−),Na^(+),and particularly K^(+).During the study,low variability in NO_(3)^(-)deposition and a decrease in NH_(4)^(+)deposition occurred.Deposition loads increased by 20-30%when precipitation passed through the canopy.The cumulative deposition of S,Cl,Na,K,Ca,and N was greater under P.abies than under P.sylvestris.How-ever,K deposition in throughfall was considerably lower under P.sylvestris compared to the P.abies or mixed stand.Throughfall S depositions declined across all three coniferous plots.Overall,there was no specific effect of tree species on throughfall chemistry.展开更多
SR-AOP(sulfate radical advanced oxidation process)is a novel water treatment method able to eliminate refractory organic pollutants.Hydrodynamic cavitation(HC)is a novel green technology,that can effectively produce s...SR-AOP(sulfate radical advanced oxidation process)is a novel water treatment method able to eliminate refractory organic pollutants.Hydrodynamic cavitation(HC)is a novel green technology,that can effectively produce strong oxidizing sulfate radicals.This paper presents a comprehensive review of the research advancements in these fields and a critical discussion of the principal factors influencing HC-enhanced SR-AOP and the mechanisms of synergistic degradation.Furthermore,some insights into the industrial application of HC/PS are also provided.Current research shows that this technology is feasible at the laboratory stage,but its application on larger scales requires further understanding and exploration.In this review,some attention is also paid to the design of the hydrodynamic cavitation reactor and the related operating parameters.展开更多
In the present work, we are interested in studying the joint distributions of pairs of the monthly maxima of the pollutants used by the environmental authorities in Mexico City to classify the air quality in the metro...In the present work, we are interested in studying the joint distributions of pairs of the monthly maxima of the pollutants used by the environmental authorities in Mexico City to classify the air quality in the metropolitan area. In order to obtain the joint distributions a copula will be considered. Since we are analyzing the monthly maxima, the extreme value distributions of Weibull and Fréchet are taken into account. Using these two distributions as marginal distributions in the copula a Bayesian inference was made in order to estimate the parameters of both distributions and also the association parameters appearing in the copula model. The pollutants taken into account are ozone, nitrogen dioxide, sulphur dioxide, carbon monoxide, and particulate matter with diameters smaller than 10 and 2.5 microns obtained from the Mexico City monitoring network. The estimation was performed by taking samples of the parameters generated through a Markov chain Monte Carlo algorithm implemented using the software OpenBugs. Once the algorithm is implemented it is applied to the pairs of pollutants where one of the coordinates of the pair is ozone and the other varies on the set of the remaining pollutants. Depending on the pollutant and the region where they were collected, different results were obtained. Hence, in some cases we have that the best model is that where we have a Fréchet distribution as the marginal distribution for the measurements of both pollutants and in others the most suitable model is the one assuming a Fréchet for ozone and a Weibull for the other pollutant. Results show that, in the present case, the estimated association parameter is a good representation to the correlation parameters between the pair of pollutants analyzed. Additionally, it is a straightforward task to obtain these correlation parameters from the corresponding association parameters.展开更多
Objective Air pollution is a leading public health issue.This study investigated the effect of air quality and pollutants on pulmonary function and inflammation in patients with asthma in Shanghai.Methods The study mo...Objective Air pollution is a leading public health issue.This study investigated the effect of air quality and pollutants on pulmonary function and inflammation in patients with asthma in Shanghai.Methods The study monitored 27 asthma outpatients for a year,collecting data on weather,patient self-management[daily asthma diary,peak expiratory flow(PEF)monitoring,medication usage],spirometry and serum markers.To explore the potential mechanisms of any effects,asthmatic mice induced by ovalbumin(OVA)were exposed to PM_(2.5).Results Statistical and correlational analyses revealed that air pollutants have both acute and chronic effects on asthma.Acute exposure showed a correlation between PEF and levels of ozone(O_(3))and nitrogen dioxide(NO_(2)).Chronic exposure indicated that interleukin-5(IL-5)and interleukin-13(IL-13)levels correlated with PM_(2.5)and PM_(10)concentrations.In asthmatic mouse models,exposure to PM_(2.5)increased cytokine levels and worsened lung function.Additionally,PM_(2.5)exposure inhibited cell proliferation by blocking the NF-κB and ERK phosphorylation pathways.Conclusion Ambient air pollutants exacerbate asthma by worsening lung function and enhancing Th2-mediated inflammation.Specifically,PM_(2.5)significantly contributes to these adverse effects.Further research is needed to elucidate the mechanisms by which PM_(2.5)impacts asthma.展开更多
Objective To study the possibility of removing nitrogen, phosphorus, and organic pollutants using seeding type immobilized microorganisms. Methods Lakes P and M in Wuhan were chosen as the objects to study the removal...Objective To study the possibility of removing nitrogen, phosphorus, and organic pollutants using seeding type immobilized microorganisms. Methods Lakes P and M in Wuhan were chosen as the objects to study the removal of nitrogen, phosphorus, and organic pollutants with the seeding type immobilized microorganisms. Correlations between the quantity of heterotrophic bacteria and the total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC) in the two lakes were studied. The dominant bacteria were detected, inoculated to the sludge and acclimated by increasing nitrogen, phosphorus and decreasing carbon source in an intermittent, time-controlled and fixed-quantity way. The bacteria were then used to prepare the seeding type immobilized microorganisms, selecting diatomite as the adsorbent cartier. The ability and influence factors of removing nitrogen, phosphorus, and organic pollutant from water samples by the seeding type immobilized microorganisms were studied. Results The coefficients of the heterotrophic bacterial quantity correlated with TOC, TP, and TN were 0.9143, 0.8229, 0.7954 in Lake P and 0.9168, 0.7187, 0.6022 in Lake M. Ten strains of dominant heterotrophic bacteria belonging to Pseudomonas, Coccus, Aeromonas, Bacillus, and Enterobateriaceae, separately, were isolated. The appropriate conditions for the seeding type immobilized microorgansims in purifying the water sample were exposure time=24 h, pH=7.0-8.0, and quantity of the immobilized microorganisms=0.75-1g/50 mL. The removal rates of TOC, TP, and TN under the above conditions were 80.2%, 81.6%, and 86.8%, respectively. Conclusion The amount of heterotrophic bacteria in the two lakes was correlated with TOC, TP, and TN. These bacteria could be acclimatized and prepared for the immobilized microorganisms which could effectively remove nitrogen, phosphorus, and mixed organic pollutants in the water sample.展开更多
The nitrogen and fluorine co doped TiO 2 polycrystalline powder was synthesized by calcinations of the hydrolysis product of tetra butyl titanate with ammonium fluoride. Nitrogen and fluorine co doping causes the abso...The nitrogen and fluorine co doped TiO 2 polycrystalline powder was synthesized by calcinations of the hydrolysis product of tetra butyl titanate with ammonium fluoride. Nitrogen and fluorine co doping causes the absorption edge of TiO 2 to shift to a lower energy region. The photocatalytic activity of co doped TiO 2 with anatase phases was found to be 2 4 times higher than that of the commercial TiO 2 photocatalyst Degussa P25 for phenol decomposition under visible light irradiation. The co doped TiO 2 powders only contain anatase phases even at 1000℃. Apparently, ammonium fluoride added retarded phase transformation of the TiO 2 powders from anatase to rutile. The substitutional fluorine and interstitial nitrogen atoms in co doped TiO 2 polycrystalline powder were responsible for the vis light response and caused the absorption edge of TiO 2 to shift to a lower energy region.展开更多
Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native ...Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native plants interact with the quantity and activity of nutrient-acquisition agents.Here a pot experiment was conducted with monoculture and mixed plantings of an invasive plant,Xanthium strumarium,and a common native legume,Glycine max.We measured traits related to root and nodule quantity and activity and mycorrhizal colonization.Compared to the monoculture,fine root quantity(biomass,surface area)and activity(root nitrogen(N)concentration,acid phosphatase activity)of G.max decreased in mixed plantings;nodule quantity(biomass)decreased by 45%,while nodule activity in Nfixing via rhizobium increased by 106%;mycorrhizal colonization was unaffected.Contribution of N fixation to leaf N content in G.max increased in the mixed plantings,and this increase was attributed to a decrease in the rhizosphere soil N of G.max in the mixed plantings.Increased root quantity and activity,along with a higher mycorrhizal association was observed in X.strumarium in the mixed compared to monoculture.Together,the invasive plant did not directly scavenge N from nodule-fixed N,but rather depleted the rhizosphere soil N of the legume,thereby stimulating the activity of N-fixation and increasing the dependence of the native legume on this N source.The quantity-activity framework holds promise for future studies on how native legumes respond to alien plant invasions.展开更多
Poultry feeds are formulated using soybean meal and animal by-products as sources of protein. Animal proteins like fish meal, blood meal, meat and bone meal are being shunned in formulating poultry feeds nowadays beca...Poultry feeds are formulated using soybean meal and animal by-products as sources of protein. Animal proteins like fish meal, blood meal, meat and bone meal are being shunned in formulating poultry feeds nowadays because they are associated with zoonotic diseases like salmonellosis and this has left soybean meal as the only source of dietary protein in broiler feeds. Soybean meal is in short supply in Zimbabwe and this country is relying on some soybean meal imports from South Africa and Zambia resulting in prices of poultry feed and broiler meat going upwards. Cheap and locally available alternative sources of protein to soybean meal must be found in order to reduce the cost of making poultry feed. The selected alternative source of protein must have protein which is highly digestible such that the bulk of this protein can be metabolized and utilized by broilers to synthesize meat leaving a little of it to be excreted through faeces and urine. Highly digestible protein is very important in broiler feed making because this reduces the amount of nitrogen lost through poultry excreta into the environment. Cowpea has been chosen to entirely or partially replace soybean meal in this review paper because it is locally grown, drought tolerant, cheap and its true protein digestibility (TPD) of 71% to 76% is generally comparable to 81% to 83% of soybean meal. Nowadays, people are concerned about protecting the environment from being polluted by wastes from industrial and agricultural activities. Poultry farming pollutes the environment with ammonia emitted from poultry excreta. The grain legumes used in formulating broiler feed such as soybean meal contain anti-nutritional factors which reduce protein digestibility and increase nitrogen excretion through poultry faeces. The nitrogen in faeces is volatilized into ammonia, emitted into the atmosphere and cause eutrophication of surface waters. Therefore, the effect of incorporating cowpea meal in broiler diets on environmental pollution by nitrogen excretion from broiler faeces needs to be explored.展开更多
The nitrogen modified lignocelluloses(NML) produced under oxic ammoniation was metabolized by white rot fungus, NH + 4 N was released, NO - 3 N concentration was decreased and total nitrogen loss was blocked wi...The nitrogen modified lignocelluloses(NML) produced under oxic ammoniation was metabolized by white rot fungus, NH + 4 N was released, NO - 3 N concentration was decreased and total nitrogen loss was blocked within incubation period. During releasing nitrogen from the metabolism of NML, white rot fungus cometabolized recalcitrant environmental pollutants and showed higher degradation capability. Results indicated that this NML complex colonized by white rot fungus might be effective with economic feasibility when they are applied into the vast field ecosystem, it might stabilize NH + 4 nitrogen flux and bioremediate the polluted environmental sites.展开更多
Excessive nitrogen and phosphorus in agricultural drainage can cause a series of water environmental problems such as eutrophication of water bodies and non-point source pollution.By monitoring the water purification ...Excessive nitrogen and phosphorus in agricultural drainage can cause a series of water environmental problems such as eutrophication of water bodies and non-point source pollution.By monitoring the water purification effect of a paddy ditch wetland in Gaochun,Nanjing,Jiangsu Province,we investigated the spatial and temporal distribution patterns of N and P pollutants in paddy drains during the whole reproductive period of rice.Then,the dynamic changes of nitrogen and phosphorus in time and space during the two processes of rainfall after basal fertilization and topdressing were analyzed after comparison.At last,the effect of the ditch wetland on nutrient purification and treatment mechanism,along with changing flow and concentration in paddy drains,was clarified.The results of this study showed that the concentrations of various nitrogen and phosphorus in the ditch basically reached the peak on the second and third days after the rainfall(5.98 mg/L for TN and 0.21 mg/L for TP),which provided a response time for effective control of nitrogen and phosphorus loss.The drainage can be purified by the ecological ditch,about 89.61%,89.03%,89.61%,98.14%,and 79.05%of TN,NH4+-N,NO3−-N,NO2−-N,and TP decline.It is more effective than natural ditches for water purification with 80.59%,40%,12.07%,91.06%and 18.42%removal rates,respectively.The results of the study can provide a theoretical basis for controlling agricultural non-point source pollution and improving the water environment of rivers and lakes scientifically.展开更多
An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption l...An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.展开更多
Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-...Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.展开更多
Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and frag...Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and fragrance of fragrant rice.However,the core commercial rice production attributes,namely the head rice yield(HRY)and 2-acetyl-1-pyrroline(2-AP)content of fragrant rice,under various nitrogen and silicon(N-Si)fertilization levels and different plantation methods remain unknown.The field experiment in this study was performed in the early seasons of 2018 and 2019 with two popular indica fragrant rice cultivars(Yuxiangyouzhan and Xiangyaxiangzhan).They were grown under six N-Si fertilization treatments(combinations of two levels of Si fertilizer,0 kg Si ha^(−1)(Si0)and 150 kg Si ha^(−1)(Si1),and three levels of N fertilizer,0 kg N ha^(−1)(N0),150 kg N ha^(−1)(N1),and 220 kg N ha^(−1)(N2))and three plantation methods(artificial transplanting(AT),mechanical transplanting(MT),and mechanical direct-seeding(MD)).The results showed that the N-Si fertilization treatments and all the plantation methods significantly affected the HRY and 2-AP content and related parameters of the two different fragrant rice cultivars.Compared with the Si0N0 treatment,the N-Si fertilization treatments resulted in higher HRY and 2-AP contents.The rates of brown rice,milled rice,head rice,and chalky rice of the fragrant rice also improved with the N-Si fertilization treatments.The N-Si fertilization treatments increased the activities of N metabolism enzymes and the accumulation of N and Si in various parts of the fragrant rice,and affected their antioxidant response parameters.The key parameters for the HRY and 2-AP content were assessed by redundancy analysis.Furthermore,the structural equation model revealed that the Si and N accumulation levels indirectly affected the HRY by affecting the N metabolism enzyme activity,N use efficiency,and grain quality of fragrant rice.Moreover,high N and Si accumulation directly promoted the 2-AP content or affected the antioxidant response parameters and indirectly regulated 2-AP synthesis.The interactions of the MT method with the N-Si fertilization treatments varied in the fragrant rice cultivars in terms of the HRY and 2-AP content,whereas the MD method was beneficial to the 2-AP content in both fragrant rice cultivars under the N-Si fertilization treatments.展开更多
Atmospheric pollution is currently a real public health problem because of its potentially harmful effects on the environment as well as on human health. Several studies conducted in America, Europe, Asia, and Africa ...Atmospheric pollution is currently a real public health problem because of its potentially harmful effects on the environment as well as on human health. Several studies conducted in America, Europe, Asia, and Africa have established a significant link between air pollution and cancer, infertility, cardiovascular and respiratory morbidity, and mortality. This study aims to measure some automotive pollutants (CO, CO<sub>2</sub>, NO<sub>2</sub>, and SO<sub>2</sub>) by a selective and colorimetric method using a measurement system on Dräger reagent tubes coupled to a Dräger Accuro sampling pump in order to do a quantitative assessment of air quality in the nine districts of Brazzaville. The results obtained during this study revealed high concentration levels of pollutants (CO, CO<sub>2</sub>, NO<sub>2</sub>, SO<sub>2</sub>), all above the standards recommended by the WHO. The results obtained during this study made it possible to categorise Brazzaville as a polluted city.展开更多
Exposure to air pollutants such as PM_(10),PM_(2.5),PM_(0.1),O_(3),CO,NO2,and SO_(2),and biological pollutants are important factors causing the evolution and furtherance of obstructive lung diseases(OLD),including as...Exposure to air pollutants such as PM_(10),PM_(2.5),PM_(0.1),O_(3),CO,NO2,and SO_(2),and biological pollutants are important factors causing the evolution and furtherance of obstructive lung diseases(OLD),including asthma and chronic obstructive pulmonary disease(COPD).Asthma is the most frequent chronic inflammatory airway disease,characterized by breathlessness,wheezing,chest tightness,and cough,together with the presence of exaggerated expiratory airflow fluctuation that varies over time.COPD is a heterogeneous lung condition characterized by chronic respiratory symptoms such as dyspnea,cough,expectoration,and/or exacerbations due to abnormalities of the airways and/or alveoli that cause persistent,often progressive,airflow obstruction.Understanding the molecular mechanisms and cellular processes based on the development of OLD on exposure to air pollutants will provide insights into the solution of pathogenesis,prevention,and treatment of these conditions.The molecular mechanisms and cellular process involved in signal transduction pathway plays a role in the binding of extracellular signaling molecules and ligands to receptors placed on the cell surface or on the inner side cell that trigger inflammation that occurs,especially when something important enters the cell to bring into a cascade response.This binding then alters the cell metabolism,shape,and gene expression in the airway.This review aimed to reveal the effect of air pollutants on the molecular mechanisms and cellular processes involved in the signal transduction pathways in OLD.展开更多
In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen wit...In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen with a relatively high level of amino acids.However,systematic identification and molecular characterization of the LHT gene family has rarely been reported in tea plants.In this study,22 CsLHTs were identified from the‘Shuchazao’genome and classified into two groups.The modeled three-dimensional structure and the conserved domains presented a high similarity among the LHTs proteins.Moreover,it was predicted that a few genes were conserved through the analysis of the physiochemical characters,structures and cis-elements in promoters.The expression patterns in tea plants revealed that CsLHT7 was mainly expressed in the roots,and CsLHT4 and CsLHT11 exhibited relatively high expression in both the roots and leaves.Moreover,the expression of all three genes could be induced by organic nitrogen.Additionally,heterogeneous expression of CsLHT4,CsLHT7 and CsLHT11 in Arabidopsis thaliana decreased the aerial parts biomass compared with that in WT plants while significantly increased the rosette biomass only for CsLHT11transgenic plants versus WT plants.Overall,our results provide fundamental information about CsLHTs and potential genes in N utilization for further analysis in tea plants.展开更多
Removal of air pollutants, such as nitrogen and sulphur containing compounds from a model oil (dodecane) was studied. An ionic liquid (1-ethyl-3-methylimidazolium chloride [C2mim] [Cl]) was used as an extractant. Liqu...Removal of air pollutants, such as nitrogen and sulphur containing compounds from a model oil (dodecane) was studied. An ionic liquid (1-ethyl-3-methylimidazolium chloride [C2mim] [Cl]) was used as an extractant. Liquid-liquid extraction by using 1-ethyl-3-methylimidazolium chloride [C2mim] [Cl] was found to be a very promising method for the removal of N- and S-compounds. This was evaluated by using a model oil (dodecane) with indole as a neutral nitrogen compound and pyridine as a basic nitrogen compound. Dibenzothiophene (DBT) was used as a sulphur compound. An extraction capacity of up to 90 wt% was achieved for the model oil containing pyridine, while only 76 wt% of indole in the oil was extracted. The extraction capacity of a model sulphur compound DBT was found to be up to 99 wt%. Regeneration of the spent ionic liquid was carried out with toluene back-extraction. A 1:1 toluene-to-IL wt ratio was performed at room temperature. It was observed that, for the spent ionic liquid containing DBT as a model compound more than 85 wt% (corresponding 3852 mg/kg) could be removed from the oil. After the second regeneration cycle, 86 wt% of the DBT was recovered from the ionic liquid to toluene. In the case of indole as the nitrogen containing species, more than 99 wt%, (corresponding to 2993 mg/kg) of the original indole was transferred from the model oil to the ionic liquid. After the first-regeneration cycle of the spent ionic liquid, 54 wt% of the indole–in-IL was transferred to toluene. Thus, both extractions of nitrogen and sulphur model compounds were successfully carried out from model oil and the back-extraction of these compounds from the ionic liquids to toluene demonstrated the proved the concept of the regeneration point of view.展开更多
The technology for spraying a sintering bed and thus improving sinter quality indicators while reducing the emission of flue gas pollutants has recently become an important research topic.The impacts on sinter quality...The technology for spraying a sintering bed and thus improving sinter quality indicators while reducing the emission of flue gas pollutants has recently become an important research topic.The impacts on sinter quality and emissions when spraying the sintering surface with different amounts and flow rates of steam were investigated in this study.The sinter quality indicators were most effectively improved by spraying 180 g of steam flow continuously at a rate of 0.02 m^(3)/min for 15 min after ignition for 8 min.The optimal effect on emission reduction was obtained by spraying 90 g of steam flow continuously at a rate of 0.01 m^(3)/min for 15 min after ignition for 8 min.展开更多
In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photosta...In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photostability by incorporating magnetic zinc oxide/graphene/iron oxide (ZGF). A solvothermal approach was used to synthesize the catalyst. X-ray diffraction (XRD), scanning electron microscopic, energy dispersive X-ray, transmission electron microscopic, vibrating sample magnetometric, and ultraviolet–visible diffuse reflectance spectroscopic techniques were used to characterize the synthesized samples. The obtained optimal Zn(NO_(3))_(2) concentration, temperature, and heating duration were 0.10 mol/L, 600℃, and 1 h, respectively. The XRD pattern revealed the presence of peaks corresponding to zinc oxide, graphene, and iron oxide, indicating that the ZGF catalyst was effectively synthesized. Furthermore, when the developed ZGF was used for methylene blue dye degradation, the optimum irradiation time, dye concentration, catalyst dosage, irradiation intensity, and solution pH were 90 min, 10 mg/L, 0.03 g/L, 100 W, and 8.0, respectively. Therefore, the synthesized ZGF system could be used as a catalyst to degrade dyes in wastewater samples. This hybrid nanocomposite consisting of zinc oxide, graphene, and iron oxide could also be used as an effective photocatalytic degrader for various dye pollutants.展开更多
基金conducted as a part of the Valentinas ?erniauskas PhD project (2021–2025) and partially within the Long-Term Research Program ‘Sustainable Forestry and Global Changes’ at the Lithuanian Agricultural and Forestry Research Center (LAMMC)
文摘Tree canopies influence atmospheric pollutant depositions depending on type,ecosystem characteristics,and local climatic conditions.This study investigated the impact of Pinus sylvestris L.and Picea abies(L.)H.Karst.,and a mixture of both,on the chemical composition of pre-cipitation.Three permanent plots within the ICP forest level Ⅱ monitoring network in Lithuania were selected to illustrate typical hemiboreal coniferous forests.The study analysed(1)the concentrations of NO_(2),NH_(3) and SO_(2) in the ambi-ent air;(2)the concentrations of SO_(4)^(2−),NO_(3)^(−),NH_(4)^(+),Na^(+),K^(+),Ca^(2+) and Cl^(-) in throughfall beneath canopies and in precipitation collected in an adjacent field,and(3)S and total N,Na^(+),K^(+),Ca^(2+)and Cl−depositions in throughfall and precipitation over 2006-2022.Results show a signifi-cant decrease in SO_(2) emissions in the ambient air;NO_(2) and NH_(3) emissions also decreased.The canopies reduced the acidity of throughfall,although they led to notably higher concentrations of SO_(4)^(2−),NO_(3)^(−),Na^(+),and particularly K^(+).During the study,low variability in NO_(3)^(-)deposition and a decrease in NH_(4)^(+)deposition occurred.Deposition loads increased by 20-30%when precipitation passed through the canopy.The cumulative deposition of S,Cl,Na,K,Ca,and N was greater under P.abies than under P.sylvestris.How-ever,K deposition in throughfall was considerably lower under P.sylvestris compared to the P.abies or mixed stand.Throughfall S depositions declined across all three coniferous plots.Overall,there was no specific effect of tree species on throughfall chemistry.
文摘SR-AOP(sulfate radical advanced oxidation process)is a novel water treatment method able to eliminate refractory organic pollutants.Hydrodynamic cavitation(HC)is a novel green technology,that can effectively produce strong oxidizing sulfate radicals.This paper presents a comprehensive review of the research advancements in these fields and a critical discussion of the principal factors influencing HC-enhanced SR-AOP and the mechanisms of synergistic degradation.Furthermore,some insights into the industrial application of HC/PS are also provided.Current research shows that this technology is feasible at the laboratory stage,but its application on larger scales requires further understanding and exploration.In this review,some attention is also paid to the design of the hydrodynamic cavitation reactor and the related operating parameters.
文摘In the present work, we are interested in studying the joint distributions of pairs of the monthly maxima of the pollutants used by the environmental authorities in Mexico City to classify the air quality in the metropolitan area. In order to obtain the joint distributions a copula will be considered. Since we are analyzing the monthly maxima, the extreme value distributions of Weibull and Fréchet are taken into account. Using these two distributions as marginal distributions in the copula a Bayesian inference was made in order to estimate the parameters of both distributions and also the association parameters appearing in the copula model. The pollutants taken into account are ozone, nitrogen dioxide, sulphur dioxide, carbon monoxide, and particulate matter with diameters smaller than 10 and 2.5 microns obtained from the Mexico City monitoring network. The estimation was performed by taking samples of the parameters generated through a Markov chain Monte Carlo algorithm implemented using the software OpenBugs. Once the algorithm is implemented it is applied to the pairs of pollutants where one of the coordinates of the pair is ozone and the other varies on the set of the remaining pollutants. Depending on the pollutant and the region where they were collected, different results were obtained. Hence, in some cases we have that the best model is that where we have a Fréchet distribution as the marginal distribution for the measurements of both pollutants and in others the most suitable model is the one assuming a Fréchet for ozone and a Weibull for the other pollutant. Results show that, in the present case, the estimated association parameter is a good representation to the correlation parameters between the pair of pollutants analyzed. Additionally, it is a straightforward task to obtain these correlation parameters from the corresponding association parameters.
基金supported by Shanghai Science and Technology Commission with Project(No.14411951100,No.21s31900400)。
文摘Objective Air pollution is a leading public health issue.This study investigated the effect of air quality and pollutants on pulmonary function and inflammation in patients with asthma in Shanghai.Methods The study monitored 27 asthma outpatients for a year,collecting data on weather,patient self-management[daily asthma diary,peak expiratory flow(PEF)monitoring,medication usage],spirometry and serum markers.To explore the potential mechanisms of any effects,asthmatic mice induced by ovalbumin(OVA)were exposed to PM_(2.5).Results Statistical and correlational analyses revealed that air pollutants have both acute and chronic effects on asthma.Acute exposure showed a correlation between PEF and levels of ozone(O_(3))and nitrogen dioxide(NO_(2)).Chronic exposure indicated that interleukin-5(IL-5)and interleukin-13(IL-13)levels correlated with PM_(2.5)and PM_(10)concentrations.In asthmatic mouse models,exposure to PM_(2.5)increased cytokine levels and worsened lung function.Additionally,PM_(2.5)exposure inhibited cell proliferation by blocking the NF-κB and ERK phosphorylation pathways.Conclusion Ambient air pollutants exacerbate asthma by worsening lung function and enhancing Th2-mediated inflammation.Specifically,PM_(2.5)significantly contributes to these adverse effects.Further research is needed to elucidate the mechanisms by which PM_(2.5)impacts asthma.
基金This work was supported by the National Key R&D Program of China[grant number 2022YFC370110]the National Natural Science Foundation of China[grant numbers 42077194,42061134008,and 42377098]+1 种基金the Shanghai International Science and Technology Partnership Project[grant number 21230780200]the Shanghai General Project[grant number 23ZR1406100].
基金This work was supported by the National Natural Science Foundation of China (No. 30400346)
文摘Objective To study the possibility of removing nitrogen, phosphorus, and organic pollutants using seeding type immobilized microorganisms. Methods Lakes P and M in Wuhan were chosen as the objects to study the removal of nitrogen, phosphorus, and organic pollutants with the seeding type immobilized microorganisms. Correlations between the quantity of heterotrophic bacteria and the total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC) in the two lakes were studied. The dominant bacteria were detected, inoculated to the sludge and acclimated by increasing nitrogen, phosphorus and decreasing carbon source in an intermittent, time-controlled and fixed-quantity way. The bacteria were then used to prepare the seeding type immobilized microorganisms, selecting diatomite as the adsorbent cartier. The ability and influence factors of removing nitrogen, phosphorus, and organic pollutant from water samples by the seeding type immobilized microorganisms were studied. Results The coefficients of the heterotrophic bacterial quantity correlated with TOC, TP, and TN were 0.9143, 0.8229, 0.7954 in Lake P and 0.9168, 0.7187, 0.6022 in Lake M. Ten strains of dominant heterotrophic bacteria belonging to Pseudomonas, Coccus, Aeromonas, Bacillus, and Enterobateriaceae, separately, were isolated. The appropriate conditions for the seeding type immobilized microorgansims in purifying the water sample were exposure time=24 h, pH=7.0-8.0, and quantity of the immobilized microorganisms=0.75-1g/50 mL. The removal rates of TOC, TP, and TN under the above conditions were 80.2%, 81.6%, and 86.8%, respectively. Conclusion The amount of heterotrophic bacteria in the two lakes was correlated with TOC, TP, and TN. These bacteria could be acclimatized and prepared for the immobilized microorganisms which could effectively remove nitrogen, phosphorus, and mixed organic pollutants in the water sample.
文摘The nitrogen and fluorine co doped TiO 2 polycrystalline powder was synthesized by calcinations of the hydrolysis product of tetra butyl titanate with ammonium fluoride. Nitrogen and fluorine co doping causes the absorption edge of TiO 2 to shift to a lower energy region. The photocatalytic activity of co doped TiO 2 with anatase phases was found to be 2 4 times higher than that of the commercial TiO 2 photocatalyst Degussa P25 for phenol decomposition under visible light irradiation. The co doped TiO 2 powders only contain anatase phases even at 1000℃. Apparently, ammonium fluoride added retarded phase transformation of the TiO 2 powders from anatase to rutile. The substitutional fluorine and interstitial nitrogen atoms in co doped TiO 2 polycrystalline powder were responsible for the vis light response and caused the absorption edge of TiO 2 to shift to a lower energy region.
基金funded by the National Natural Science Foundation of China (32171746,31870522,42077450,32371786)the leading talents of basic research in Henan Province+3 种基金Funding for Characteristic and Backbone Forestry Discipline Group of Henan Provincethe Scientific Research Foundation of Henan Agricultural University (30500854)Research Funds for overseas returnee in Henan Province,Chinasupported by National Key Research and Development Program of China (2019YFE0117000)。
文摘Suppression of roots and/or their symbiotic microorganisms,such as mycorrhizal fungi and rhizobia,is an effective way for alien plants to outcompete native plants.However,little is known about how invasive and native plants interact with the quantity and activity of nutrient-acquisition agents.Here a pot experiment was conducted with monoculture and mixed plantings of an invasive plant,Xanthium strumarium,and a common native legume,Glycine max.We measured traits related to root and nodule quantity and activity and mycorrhizal colonization.Compared to the monoculture,fine root quantity(biomass,surface area)and activity(root nitrogen(N)concentration,acid phosphatase activity)of G.max decreased in mixed plantings;nodule quantity(biomass)decreased by 45%,while nodule activity in Nfixing via rhizobium increased by 106%;mycorrhizal colonization was unaffected.Contribution of N fixation to leaf N content in G.max increased in the mixed plantings,and this increase was attributed to a decrease in the rhizosphere soil N of G.max in the mixed plantings.Increased root quantity and activity,along with a higher mycorrhizal association was observed in X.strumarium in the mixed compared to monoculture.Together,the invasive plant did not directly scavenge N from nodule-fixed N,but rather depleted the rhizosphere soil N of the legume,thereby stimulating the activity of N-fixation and increasing the dependence of the native legume on this N source.The quantity-activity framework holds promise for future studies on how native legumes respond to alien plant invasions.
文摘Poultry feeds are formulated using soybean meal and animal by-products as sources of protein. Animal proteins like fish meal, blood meal, meat and bone meal are being shunned in formulating poultry feeds nowadays because they are associated with zoonotic diseases like salmonellosis and this has left soybean meal as the only source of dietary protein in broiler feeds. Soybean meal is in short supply in Zimbabwe and this country is relying on some soybean meal imports from South Africa and Zambia resulting in prices of poultry feed and broiler meat going upwards. Cheap and locally available alternative sources of protein to soybean meal must be found in order to reduce the cost of making poultry feed. The selected alternative source of protein must have protein which is highly digestible such that the bulk of this protein can be metabolized and utilized by broilers to synthesize meat leaving a little of it to be excreted through faeces and urine. Highly digestible protein is very important in broiler feed making because this reduces the amount of nitrogen lost through poultry excreta into the environment. Cowpea has been chosen to entirely or partially replace soybean meal in this review paper because it is locally grown, drought tolerant, cheap and its true protein digestibility (TPD) of 71% to 76% is generally comparable to 81% to 83% of soybean meal. Nowadays, people are concerned about protecting the environment from being polluted by wastes from industrial and agricultural activities. Poultry farming pollutes the environment with ammonia emitted from poultry excreta. The grain legumes used in formulating broiler feed such as soybean meal contain anti-nutritional factors which reduce protein digestibility and increase nitrogen excretion through poultry faeces. The nitrogen in faeces is volatilized into ammonia, emitted into the atmosphere and cause eutrophication of surface waters. Therefore, the effect of incorporating cowpea meal in broiler diets on environmental pollution by nitrogen excretion from broiler faeces needs to be explored.
文摘The nitrogen modified lignocelluloses(NML) produced under oxic ammoniation was metabolized by white rot fungus, NH + 4 N was released, NO - 3 N concentration was decreased and total nitrogen loss was blocked within incubation period. During releasing nitrogen from the metabolism of NML, white rot fungus cometabolized recalcitrant environmental pollutants and showed higher degradation capability. Results indicated that this NML complex colonized by white rot fungus might be effective with economic feasibility when they are applied into the vast field ecosystem, it might stabilize NH + 4 nitrogen flux and bioremediate the polluted environmental sites.
文摘Excessive nitrogen and phosphorus in agricultural drainage can cause a series of water environmental problems such as eutrophication of water bodies and non-point source pollution.By monitoring the water purification effect of a paddy ditch wetland in Gaochun,Nanjing,Jiangsu Province,we investigated the spatial and temporal distribution patterns of N and P pollutants in paddy drains during the whole reproductive period of rice.Then,the dynamic changes of nitrogen and phosphorus in time and space during the two processes of rainfall after basal fertilization and topdressing were analyzed after comparison.At last,the effect of the ditch wetland on nutrient purification and treatment mechanism,along with changing flow and concentration in paddy drains,was clarified.The results of this study showed that the concentrations of various nitrogen and phosphorus in the ditch basically reached the peak on the second and third days after the rainfall(5.98 mg/L for TN and 0.21 mg/L for TP),which provided a response time for effective control of nitrogen and phosphorus loss.The drainage can be purified by the ecological ditch,about 89.61%,89.03%,89.61%,98.14%,and 79.05%of TN,NH4+-N,NO3−-N,NO2−-N,and TP decline.It is more effective than natural ditches for water purification with 80.59%,40%,12.07%,91.06%and 18.42%removal rates,respectively.The results of the study can provide a theoretical basis for controlling agricultural non-point source pollution and improving the water environment of rivers and lakes scientifically.
文摘An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.
基金supported by the National Natural Science Foundation of China(22025801)and(22208190)National Postdoctoral Program for Innovative Talents(BX2021146)Shuimu Tsinghua Scholar Program(2021SM055).
文摘Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.
基金This project was financially supported by the National Natural Science Foundation of China(31601244 and 31971843)the Guangdong Provincial Key Field Research and Development Plan Project,China(2019B020221003)the Modern Agricultural Industrial Technology System of Guangdong Province,China(2020KJ105).
文摘Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and fragrance of fragrant rice.However,the core commercial rice production attributes,namely the head rice yield(HRY)and 2-acetyl-1-pyrroline(2-AP)content of fragrant rice,under various nitrogen and silicon(N-Si)fertilization levels and different plantation methods remain unknown.The field experiment in this study was performed in the early seasons of 2018 and 2019 with two popular indica fragrant rice cultivars(Yuxiangyouzhan and Xiangyaxiangzhan).They were grown under six N-Si fertilization treatments(combinations of two levels of Si fertilizer,0 kg Si ha^(−1)(Si0)and 150 kg Si ha^(−1)(Si1),and three levels of N fertilizer,0 kg N ha^(−1)(N0),150 kg N ha^(−1)(N1),and 220 kg N ha^(−1)(N2))and three plantation methods(artificial transplanting(AT),mechanical transplanting(MT),and mechanical direct-seeding(MD)).The results showed that the N-Si fertilization treatments and all the plantation methods significantly affected the HRY and 2-AP content and related parameters of the two different fragrant rice cultivars.Compared with the Si0N0 treatment,the N-Si fertilization treatments resulted in higher HRY and 2-AP contents.The rates of brown rice,milled rice,head rice,and chalky rice of the fragrant rice also improved with the N-Si fertilization treatments.The N-Si fertilization treatments increased the activities of N metabolism enzymes and the accumulation of N and Si in various parts of the fragrant rice,and affected their antioxidant response parameters.The key parameters for the HRY and 2-AP content were assessed by redundancy analysis.Furthermore,the structural equation model revealed that the Si and N accumulation levels indirectly affected the HRY by affecting the N metabolism enzyme activity,N use efficiency,and grain quality of fragrant rice.Moreover,high N and Si accumulation directly promoted the 2-AP content or affected the antioxidant response parameters and indirectly regulated 2-AP synthesis.The interactions of the MT method with the N-Si fertilization treatments varied in the fragrant rice cultivars in terms of the HRY and 2-AP content,whereas the MD method was beneficial to the 2-AP content in both fragrant rice cultivars under the N-Si fertilization treatments.
文摘Atmospheric pollution is currently a real public health problem because of its potentially harmful effects on the environment as well as on human health. Several studies conducted in America, Europe, Asia, and Africa have established a significant link between air pollution and cancer, infertility, cardiovascular and respiratory morbidity, and mortality. This study aims to measure some automotive pollutants (CO, CO<sub>2</sub>, NO<sub>2</sub>, and SO<sub>2</sub>) by a selective and colorimetric method using a measurement system on Dräger reagent tubes coupled to a Dräger Accuro sampling pump in order to do a quantitative assessment of air quality in the nine districts of Brazzaville. The results obtained during this study revealed high concentration levels of pollutants (CO, CO<sub>2</sub>, NO<sub>2</sub>, SO<sub>2</sub>), all above the standards recommended by the WHO. The results obtained during this study made it possible to categorise Brazzaville as a polluted city.
基金the funding provided by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2020R1A2C1006506).
文摘Exposure to air pollutants such as PM_(10),PM_(2.5),PM_(0.1),O_(3),CO,NO2,and SO_(2),and biological pollutants are important factors causing the evolution and furtherance of obstructive lung diseases(OLD),including asthma and chronic obstructive pulmonary disease(COPD).Asthma is the most frequent chronic inflammatory airway disease,characterized by breathlessness,wheezing,chest tightness,and cough,together with the presence of exaggerated expiratory airflow fluctuation that varies over time.COPD is a heterogeneous lung condition characterized by chronic respiratory symptoms such as dyspnea,cough,expectoration,and/or exacerbations due to abnormalities of the airways and/or alveoli that cause persistent,often progressive,airflow obstruction.Understanding the molecular mechanisms and cellular processes based on the development of OLD on exposure to air pollutants will provide insights into the solution of pathogenesis,prevention,and treatment of these conditions.The molecular mechanisms and cellular process involved in signal transduction pathway plays a role in the binding of extracellular signaling molecules and ligands to receptors placed on the cell surface or on the inner side cell that trigger inflammation that occurs,especially when something important enters the cell to bring into a cascade response.This binding then alters the cell metabolism,shape,and gene expression in the airway.This review aimed to reveal the effect of air pollutants on the molecular mechanisms and cellular processes involved in the signal transduction pathways in OLD.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFD1000600)the National Natural Science Foundation of China(Grant No.32070376)。
文摘In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen with a relatively high level of amino acids.However,systematic identification and molecular characterization of the LHT gene family has rarely been reported in tea plants.In this study,22 CsLHTs were identified from the‘Shuchazao’genome and classified into two groups.The modeled three-dimensional structure and the conserved domains presented a high similarity among the LHTs proteins.Moreover,it was predicted that a few genes were conserved through the analysis of the physiochemical characters,structures and cis-elements in promoters.The expression patterns in tea plants revealed that CsLHT7 was mainly expressed in the roots,and CsLHT4 and CsLHT11 exhibited relatively high expression in both the roots and leaves.Moreover,the expression of all three genes could be induced by organic nitrogen.Additionally,heterogeneous expression of CsLHT4,CsLHT7 and CsLHT11 in Arabidopsis thaliana decreased the aerial parts biomass compared with that in WT plants while significantly increased the rosette biomass only for CsLHT11transgenic plants versus WT plants.Overall,our results provide fundamental information about CsLHTs and potential genes in N utilization for further analysis in tea plants.
文摘Removal of air pollutants, such as nitrogen and sulphur containing compounds from a model oil (dodecane) was studied. An ionic liquid (1-ethyl-3-methylimidazolium chloride [C2mim] [Cl]) was used as an extractant. Liquid-liquid extraction by using 1-ethyl-3-methylimidazolium chloride [C2mim] [Cl] was found to be a very promising method for the removal of N- and S-compounds. This was evaluated by using a model oil (dodecane) with indole as a neutral nitrogen compound and pyridine as a basic nitrogen compound. Dibenzothiophene (DBT) was used as a sulphur compound. An extraction capacity of up to 90 wt% was achieved for the model oil containing pyridine, while only 76 wt% of indole in the oil was extracted. The extraction capacity of a model sulphur compound DBT was found to be up to 99 wt%. Regeneration of the spent ionic liquid was carried out with toluene back-extraction. A 1:1 toluene-to-IL wt ratio was performed at room temperature. It was observed that, for the spent ionic liquid containing DBT as a model compound more than 85 wt% (corresponding 3852 mg/kg) could be removed from the oil. After the second regeneration cycle, 86 wt% of the DBT was recovered from the ionic liquid to toluene. In the case of indole as the nitrogen containing species, more than 99 wt%, (corresponding to 2993 mg/kg) of the original indole was transferred from the model oil to the ionic liquid. After the first-regeneration cycle of the spent ionic liquid, 54 wt% of the indole–in-IL was transferred to toluene. Thus, both extractions of nitrogen and sulphur model compounds were successfully carried out from model oil and the back-extraction of these compounds from the ionic liquids to toluene demonstrated the proved the concept of the regeneration point of view.
文摘The technology for spraying a sintering bed and thus improving sinter quality indicators while reducing the emission of flue gas pollutants has recently become an important research topic.The impacts on sinter quality and emissions when spraying the sintering surface with different amounts and flow rates of steam were investigated in this study.The sinter quality indicators were most effectively improved by spraying 180 g of steam flow continuously at a rate of 0.02 m^(3)/min for 15 min after ignition for 8 min.The optimal effect on emission reduction was obtained by spraying 90 g of steam flow continuously at a rate of 0.01 m^(3)/min for 15 min after ignition for 8 min.
基金supported by the Research and Development Institute at Nakhon Si Thammarat Rajabhat University and the Nanomaterials Chemistry Research Unit at Nakhon Si Thammarat Rajabhat University,Nakhon Si Thammarat,Thailand(Grant No.004/2563).
文摘In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photostability by incorporating magnetic zinc oxide/graphene/iron oxide (ZGF). A solvothermal approach was used to synthesize the catalyst. X-ray diffraction (XRD), scanning electron microscopic, energy dispersive X-ray, transmission electron microscopic, vibrating sample magnetometric, and ultraviolet–visible diffuse reflectance spectroscopic techniques were used to characterize the synthesized samples. The obtained optimal Zn(NO_(3))_(2) concentration, temperature, and heating duration were 0.10 mol/L, 600℃, and 1 h, respectively. The XRD pattern revealed the presence of peaks corresponding to zinc oxide, graphene, and iron oxide, indicating that the ZGF catalyst was effectively synthesized. Furthermore, when the developed ZGF was used for methylene blue dye degradation, the optimum irradiation time, dye concentration, catalyst dosage, irradiation intensity, and solution pH were 90 min, 10 mg/L, 0.03 g/L, 100 W, and 8.0, respectively. Therefore, the synthesized ZGF system could be used as a catalyst to degrade dyes in wastewater samples. This hybrid nanocomposite consisting of zinc oxide, graphene, and iron oxide could also be used as an effective photocatalytic degrader for various dye pollutants.