期刊文献+
共找到5,980篇文章
< 1 2 250 >
每页显示 20 50 100
Defects and morphology engineering for constructing V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S nanotube heterojunction arrays toward efficient bifunctional electrocatalyst for overall water splitting
1
作者 Wenyuan Sun Alan Meng +4 位作者 Lei Wang Guicun Li Jinfeng Cui Yongkai Sun Zhenjiang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期29-40,共12页
The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube he... The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube heterojunction arrays were in-situ grown on copper foam(V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF)for efficient electrocatalytic overall water splitting.With the merits of nanotube arrays and efficient electronic mod-ulation drived by the OD vacancy defect and 2D heterojunction defect,the resultant V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF electrocatalyst exhibits excellent electrocatalytic activity with a low overpotential of 47 mV for the hydrogen evolution reaction(HER)at 10 mA cm^(-2) current density,and 263 mV for the oxygen evolution reaction(OER)at 50 mA cm^(-2) current density,as well as a cell voltage of 1.48 V at 10 mA cm^(-2).Moreover,the nanotube heterojunction arrays endows V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF with outstanding stability in long-term catalytic processes,as confirmed by the continuous chronopotentiom-etry tests at current densities of 10 mA cm^(-2) for 100 h. 展开更多
关键词 Nanotubearrays HETEROJUNCTION VACANCY Bifunctional electrocatalyst overall water splitting
下载PDF
In-situ building of multiscale porous NiFeZn/NiZn-Ni heterojunction for superior overall water splitting
2
作者 Ya-xin LI Hong-xiao YANG +4 位作者 Qiu-ping ZHANG Tian-zhen JIAN Wen-qing MA Cai-xia XU Qiu-xia ZHOU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2972-2986,共15页
The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A sel... The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A self-supporting,multiscale porous NiFeZn/NiZn-Ni catalyst with a triple interface heterojunction on nickel foam(NF)(NiFeZn/NiZn-Ni/NF)was in-situ fabricated using an electroplating-annealing-etching strategy.The unique multiinterface engineering and three-dimensional porous scaffold significantly modify the mass transport and electron interaction,resulting in superior bifunctional electrocatalytic performance for water splitting.The NiFeZn/NiZn-Ni/NF catalyst demonstrates low overpotentials of 187 m V for HER and 320 mV for OER at a current density of 600 mA/cm~2,along with high durability over 150 h in alkaline solution.Furthermore,an electrolytic cell assembled with NiFeZn/NiZn-Ni/NF as both the cathode and anode achieves the current densities of 600 and 1000 m A/cm2 at cell voltages of 1.796 and 1.901 V,respectively,maintaining the high stability at 50 mA/cm2 for over 100 h.These findings highlight the potential of NiFeZn/NiZn-Ni/NF as a cost-effective and highly efficient bifunctional electrocatalyst for overall water splitting. 展开更多
关键词 NiFeZn alloy multiple interface porous structure DEALLOYING overall water splitting
下载PDF
Self-derivation and reconstruction of silver nanoparticle reinforced cobalt-nickel bimetallic hydroxides through interface engineering for overall water splitting
3
作者 Yan Li Jie Han +5 位作者 Weiwei Bao Junjun Zhang Taotao Ai Mameng Yang Chunming Yang Pengfei Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期590-599,I0013,共11页
Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen e... Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen evolution reaction(OER),have significant research potential because hydroxide reconstruction to generate an active phase is a remarkable advantage.Herein,the complete reconstruction of ultrathin CoNi(OH)_(2) nanosheets was achieved by embedding Ag nanoparticles into the hydroxide to induce a spontaneous redox reaction(SRR),forming heterojunction Ag@CoNi(OH)_(2) for bifunctional hydrolysis.Theoretical calculations and in situ Raman and ex situ characterizations revealed that the inductive effect of the Ag cation redistributed the charge to promote phase transformation to highly activate Ag-modified hydroxides.The Co-Ni dual sites in Co/NiOOH serve as novel active sites for optimizing the intermediates,thereby weakening the barrier formed by OOH^*.Ag@CoNi(OH)_(2) required a potential of 1.55 V to drive water splitting at a current density of 10 mA cm^(-2),with nearly 98.6% Faraday efficiency.Through ion induction and triggering of electron regulation in the OER via the synergistic action of the heterogeneous interface and surface reconstruction,this strategic design can overcome the limited capacity of bimetallic hydroxides and bridge the gap between the basic theory and industrialization of water decomposition. 展开更多
关键词 Surface reconstruction Bimetallic hydroxides Ag nanoparticle Operando Raman overall water splitting
下载PDF
MOF-Derived Iron-Cobalt Phosphide Nanoframe as Bifunctional Electrocatalysts for Overall Water Splitting
4
作者 Yanqi Yuan Kun Wang +5 位作者 Boan Zhong Dongkun Yu Fei Ye Jing Liu Joydeep Dutta Peng Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期312-320,共9页
Transition metal phosphides(TMPs)have emerged as an alternative to precious metals as efficient and low-cost catalysts for water electrolysis.Elemental doping and morphology control are effective approaches to further... Transition metal phosphides(TMPs)have emerged as an alternative to precious metals as efficient and low-cost catalysts for water electrolysis.Elemental doping and morphology control are effective approaches to further improve the performance of TMPs.Herein,Fe-doped CoP nanoframes(Fe-CoP NFs)with specific open cage configuration were designed and synthesized.The unique nano-framework structured Fe-CoP material shows overpotentials of only 255 and 122 mV at 10 mA cm^(−2)for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER),respectively,overwhelming most transition metal phosphides.For overall water splitting,the cell voltage is 1.65 V for Fe-CoP NFs at a current density of 10 mA cm^(−2),much superior to what is observed for the classical nanocubic structures.Fe-CoP NFs show no activity degradation up to 100 h which contrasts sharply with the rapidly decaying performance of noble metal catalyst reference.The superior electrocatalytic performance of Fe-CoP NFs due to abundant accessible active sites,reduced kinetic energy barrier,and preferable*O-containing intermediate adsorption is demonstrated through experimental observations and theoretical calculations.Our findings could provide a potential method for the preparation of multifunctional material with hollow structures and offer more hopeful prospects for obtaining efficient earth-abundant catalysts for water splitting. 展开更多
关键词 ELECTROCATALYSIS hollow structure iron-doped cobalt phosphide MOF overall water splitting
下载PDF
High-throughput calculation-based rational design of Fe-doped MoS_(2) nanosheets for electrocatalytic p H-universal overall water splitting
5
作者 Guangtong Hai Xiangdong Xue +3 位作者 Zhenyu Wu Canyang Zhang Xin Liu Xiubing Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期194-202,共9页
Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheet... Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheets(SFe-DMNs)were prepared based on the high-throughput density functional theory(DFT)calculation screening.Due to the synergistic effect between Fe atom and MoS_(2)and optimized intermediate binding energy,the SFe-DMNs could deliver outstanding activity for both HER and OER.When assembled into a two-electrode electrolytic cell,the SFe-DMNs could achieve the current density of 50 mA cm^(-2)at a low cell voltage of 1.55 V under neutral condition.These results not only confirmed the effectiveness of high-throughput screening,but also revealed the excellent activity and thus the potential applications in fuel cells of SFe-DMNs. 展开更多
关键词 High-throughput calculation overall water splitting Single atom doped catalyst Molybdenum disulfide nanosheet
下载PDF
Co_(3)S_(4)-pyrolysis lotus fiber flexible textile as a hybrid electrocatalyst for overall water splitting
6
作者 Qiulan Zhou Zhen Liu +5 位作者 Xuxu Wang Yaqian Li Xin Qin Lijuan Guo Liwei Zhou Weijian Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期336-344,I0008,共10页
Electrocatalytic overall water splitting(OWS),a pivotal approach in addressing the global energy crisis,aims to produce hydrogen and oxygen.However,most of the catalysts in powder form are adhesively bounding to the e... Electrocatalytic overall water splitting(OWS),a pivotal approach in addressing the global energy crisis,aims to produce hydrogen and oxygen.However,most of the catalysts in powder form are adhesively bounding to the electrodes,resulting in catalyst detachment by bubble generation and other uncertain interference,and eventually reducing the OWS performance.To surmount this challenge,we synthesized a hybrid material of Co_(3)S_(4)-pyrolysis lotus fiber(labeled as Co_(3)S_(4)-p LF)textile by hydrothermal and hightemperature pyrolysis processes for electrocatalytic OWS.Owing to the natural LF textile exposing the uniformly distributed functional groups(AOH,ANH_(2),etc.)to anchor Co_(3)S_(4)nanoparticles with hierarchical porous structure and outstanding hydrophily,the hybrid Co_(3)S_(4)-p LF catalyst shows low overpotentials at 10 m A cm^(-2)(η_(10,HER)=100 m Vη_(10,OER)=240 mV)alongside prolonged operational stability during electrocatalytic reactions.Theoretical calculations reveal that the electron transfer from p LF to Co_(3)S_(4)in the hybrid Co_(3)S_(4)-p LF is beneficial to the electrocatalytic process.This work will shed light on the development of nature-inspired carbon-based materials in hybrid electrocatalysts for OWS. 展开更多
关键词 overall water splitting Hybrid electrocatalyst TEXTILE Lotus fiber Co_(3)S_(4)nanoparticles
下载PDF
Duplex Interpenetrating-Phase FeNiZn and FeNi_(3)Heterostructure with Low-Gibbs Free Energy Interface Coupling for Highly Efficient Overall Water Splitting 被引量:8
7
作者 Qiuxia Zhou Caixia Xu +4 位作者 Jiagang Hou Wenqing Ma Tianzhen Jian Shishen Yan Hong Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期72-89,共18页
The sluggish kinetics of both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)generate the large overpotential in water electrolysis and thus high-cost hydrogen production.Here,multidimensional nanop... The sluggish kinetics of both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)generate the large overpotential in water electrolysis and thus high-cost hydrogen production.Here,multidimensional nanoporous interpenetrating-phase FeNiZn alloy and FeNi_(3)intermetallic heterostructure is in situ constructed on NiFe foam(FeNiZn/FeNi_(3)@NiFe)by dealloying protocol.Coupling with the eminent synergism among specific constituents and the highly efficient mass transport from integrated porous backbone,FeNiZn/FeNi_(3)@NiFe depicts exceptional bifunctional activities for water splitting with extremely low overpotentials toward OER and HER(η_(1000)=367/245 mV)as well as the robust durability during the 400 h testing in alkaline solution.The as-built water electrolyzer with FeNiZn/FeNi_(3)@NiFe as both anode and cathode exhibits record-high performances for sustainable hydrogen output in terms of much lower cell voltage of 1.759 and 1.919 V to deliver the current density of 500 and 1000 mA cm^(-2)as well long working lives.Density functional theory calculations disclose that the interface interaction between FeNiZn alloy and FeNi_(3)intermetallic generates the modulated electron structure state and optimized intermediate chemisorption,thus diminishing the energy barriers for hydrogen production in water splitting.With the merits of fine performances,scalable fabrication,and low cost,FeNiZn/FeNi_(3)@NiFe holds prospective application potential as the bifunctional electrocatalyst for water splitting. 展开更多
关键词 HETEROSTRUCTURE Interface effect DEALLOYING Bifunctional electrocatalyst overall water splitting
下载PDF
Recent Advances of Transition Metal Basic Salts for Electrocatalytic Oxygen Evolution Reaction and Overall Water Electrolysis 被引量:13
8
作者 Bingrong Guo Yani Ding +4 位作者 Haohao Huo Xinxin Wen Xiaoqian Ren Ping Xu Siwei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期238-260,共23页
Electrocatalytic oxygen evolution reaction(OER)has been recognized as the bottleneck of overall water splitting,which is a promising approach for sustainable production of H_(2).Transition metal(TM)hydroxides are the ... Electrocatalytic oxygen evolution reaction(OER)has been recognized as the bottleneck of overall water splitting,which is a promising approach for sustainable production of H_(2).Transition metal(TM)hydroxides are the most conventional and classical non-noble metal-based electrocatalysts for OER,while TM basic salts[M^(2+)(OH)_(2-x)(A_(m^(-))_(x/m),A=CO_(3)^(2−),NO_(3)^(−),F^(−),Cl^(−)]consisting of OH−and another anion have drawn extensive research interest due to its higher catalytic activity in the past decade.In this review,we summarize the recent advances of TM basic salts and their application in OER and further overall water splitting.We categorize TM basic salt-based OER pre-catalysts into four types(CO_(3)^(2−),NO_(3)^(−),F^(−),Cl^(−)according to the anion,which is a key factor for their outstanding performance towards OER.We highlight experimental and theoretical methods for understanding the structure evolution during OER and the effect of anion on catalytic performance.To develop bifunctional TM basic salts as catalyst for the practical electrolysis application,we also review the present strategies for enhancing its hydrogen evolution reaction activity and thereby improving its overall water splitting performance.Finally,we conclude this review with a summary and perspective about the remaining challenges and future opportunities of TM basic salts as catalysts for water electrolysis. 展开更多
关键词 Transition metal basic salts ELECTROCATALYTIC Oxygen evolution reaction(OER) overall water electrolysis
下载PDF
Optimizing band structure of CoP nanoparticles via rich-defect carbon shell toward bifunctional electrocatalysts for overall water splitting 被引量:5
9
作者 Juncheng Wu Zhe‐Fan Wang +7 位作者 Taotao Guan Guoli Zhang Juan Zhang Jie Han Shengqin Guan Ning Wang Jianlong Wang Kaixi Li 《Carbon Energy》 SCIE CSCD 2023年第3期112-125,共14页
Transition-metal phosphides(TMPs)with high catalytic activity are widely used in the design of electrodes for water splitting.However,a major challenge is how to achieve the trade-off between activity and stability of... Transition-metal phosphides(TMPs)with high catalytic activity are widely used in the design of electrodes for water splitting.However,a major challenge is how to achieve the trade-off between activity and stability of TMPs.Herein,a novel method for synthesizing CoP nanoparticles encapsu-lated in a rich-defect carbon shell(CoP/DCS)is developed through the self-assembly of modified polycyclic aromatic molecules.The graft and removal of high-activity C-N bonds of aromatic molecules render the controllable design of crystallite defects of carbon shell.The density functional theory calculation indicates that the carbon defects with unpaired electrons could effectively tailor the band structure of CoP.Benefiting from the improved activity and corrosion resistance,the CoP/DCS delivers outstanding difunctional hydrogen evolution reaction(88 mV)and oxygen evolution reaction(251 mV)performances at 10 mA cm^(−2)current density.Furthermore,the coupled water electrolyzer with CoP/DCS as both the cathode and anode presents ultralow cell voltages of 1.49 V to achieve 10 mA cm^(−2)with long-time stability.This strategy to improve TMPs electrocatalyst with rich-DCS and heterogeneous structure will inspire the design of other transition metal compound electrocatalysts for water splitting. 展开更多
关键词 band structure bifunctional electrocatalysts CoP nanoparticles overall water splitting rich‐defect carbon
下载PDF
Dynamically-evolved surface heterojunction in iridium nanocrystals boosting acidic oxygen evolution and overall water splitting 被引量:2
10
作者 Chenyu Yang Xiuxiu Zhang +6 位作者 Qizheng An Meihuan Liu Wanlin Zhou Yuanli Li Fengchun Hu Qinghua Liu Hui Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期374-380,I0011,共8页
Simultaneously realizing improved activity and stability of acidic oxygen evolution reaction(OER) electrocatalysts is highly promising for developing cost-effective sustainable energy in the splitting of water techniq... Simultaneously realizing improved activity and stability of acidic oxygen evolution reaction(OER) electrocatalysts is highly promising for developing cost-effective sustainable energy in the splitting of water technique.Herein,we report iridium nanocrystals embedded into 3D conductive clothes(Ir-NCT/CC) as a low iridium electrocatalyst realizing ultrahigh acidic OER activity and robust stability.The well-designed Ir-NCT/CC requires a low overpotential of 202 mV to reach the current density of 10 mA cm^(-2)with a high mass activity of 1754 A g^(-1).Importantly,in acidic overall water splitting,Ir-NCT/CC merely delivers a cell voltage of 1.469 V at a typical current density of 10 mA cm^(-2)and also maintains robust durability under continuous operation.We identify that a low working voltage drives the formation of a highly stable amorphous IrOxactive phase over the surface of Ir nanocrystals(surface heterojunction IrOx/Ir-NCT) during operating conditions,which contributes to an effective and durable OER process. 展开更多
关键词 ELECTROCATALYST Surface heterojunction In-situ synchrotron radiation techniques Reaction kinetics Acidic overall water splitting
下载PDF
Constructing P-CoMoO_(4)@NiCoP heterostructure nanoarrays on Ni foam as efficient bifunctional electrocatalysts for overall water splitting 被引量:2
11
作者 Ning You Shuai Cao +6 位作者 Mengqiu Huang Xiaoming Fan Kun Shi Haijian Huang Zhangxian Chen Zeheng Yang Weixin Zhang 《Nano Materials Science》 EI CAS CSCD 2023年第3期278-286,共9页
Improving catalytic activity and durabilty through the structural and compositional development of bifunctional electrocatalysts with low cost,high activity and stability is a challenging issue in electrochemical wate... Improving catalytic activity and durabilty through the structural and compositional development of bifunctional electrocatalysts with low cost,high activity and stability is a challenging issue in electrochemical water splitting.Herein,we report the fabrication of heterostructured P-CoMoO_(4)@NiCoP on a Ni foam substrate through interface engineering,by adjusting its composition and architecture.Benefitting from the tailored electronic structure and exposed active sites,the heterostructured P-CoMoO_(4)@NiCoP/NF arrays can be coordinated to boost the overall water splitting.In addition,the superhydrophilic and superaerophobic properties of P-CoMoO_(4)@NiCoP/NF make it conducive to water dissociation and bubble separation in the electrocatalytic process.The heterostructured PCoMoO_(4)@NiCoP/NF exhibits excellent bifunctional electrocatalysis activity with a low overpotential of 66 mV at 10 mA cm^(-2) for HER and 252 mV at 100 mA cm^(-2) for OER.Only 1.62 V potential is required to deliver 20 mA cm^(-2) in a two-electrode electrolysis system,providing a decent overall water splitting performance.The rational construction of the heterostructure makes it possible to regulate the electronic structures and active sites of the electrocatalysts to promote their catalytic activity. 展开更多
关键词 HETEROSTRUCTURE P-CoMoO_(4)@NiCoP Bifunctional electrocatalysts overall water splitting
下载PDF
Vacancies and interfaces engineering of core-shell heterostuctured NiCoP/NiO as trifunctional electrocatalysts for overall water splitting and zinc-air batteries 被引量:1
12
作者 Xiaolin Hu Jichuan Fan +4 位作者 Ronghua Wang Meng Li Shikuan Sun Chaohe Xu Fusheng Pan 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期601-611,共11页
The electronic structures and properties of electrocatalysts,which depend on the physicochemical structure and metallic element components,could significantly affect their electrocatalytic performance and their future... The electronic structures and properties of electrocatalysts,which depend on the physicochemical structure and metallic element components,could significantly affect their electrocatalytic performance and their future applications in Zn-air battery(ZAB)and overall water splitting(OWS).Here,by combining vacancies and heterogeneous interfacial engineering,three-dimensional(3D)core-shell NiCoP/NiO heterostructures with dominated oxygen vacancies have been controllably in-situ grown on carbon cloth for using as highly efficient electrocatalysts toward hydrogen and oxygen electrochemical reactions.Theoretical calculation and electrochemical results manifest that the hybridization of NiCoP core with NiO shell produces a strong synergistic electronic coupling effect.The oxygen vacancy can enable the emergence of new electronic states within the band gap,crossing the Fermi levels of the two spin components and optimizing the local electronic structure.Besides,the hierarchical core-shell NiCoP/NiO nanoarrays also endow the catalysts with multiple exposed active sites,faster mass transfer behavior,optimized electronic strutures and improved electrochemical performance during ZAB and OWS applications. 展开更多
关键词 DFT calculations Interface catalysis HETEROSTRUCTURES overall water splitting Zn–air batteries
下载PDF
MXene based non-noble metal catalyst for overall water splitting in alkaline conditions
13
作者 Dezheng Guo Qiwen Pan +2 位作者 Thomas Vietor Weijun Lu Yuan Gao 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期518-539,I0014,共23页
MXene,the two-dimensional transition metal carbide or nitride material,was first discovered in 2011.They possess superior characteristics such as stability,electric conductivity,and electrochemical properties,that mak... MXene,the two-dimensional transition metal carbide or nitride material,was first discovered in 2011.They possess superior characteristics such as stability,electric conductivity,and electrochemical properties,that make them attract the attention of the energy engineering field.Overall water splitting which generates hydrogen and oxygen,not only serves as a clean energy supply technology but also demonstrates the capacity for redistribution and integration of renewable energy.MXene based non-noble metal has demonstrated significant potential in terms of cost-effectiveness.Therefore,the current focus is implementing targeted regulation at the micro level to render it effective comparable to the precious metals.In this context,the mechanisms of the hydrogen evolution reaction(HER) and the oxygen evolution reaction(OER) under the influence of MXene can be elucidated in terms of electron and ion transfer processes,hydrogen coverage,and regulation of terminal groups.Certainly,the composition,structure,synthesis,and stability strategies of MXene are the subjects of comprehensive investigation from both theoretical calculations using density functional theory(DFT) and experimental perspectives.In addition,this review provides a comprehensive summary of MXene based non-noble metal and various modification methods.These methods encompass doping,vacancy engineering,hybrid structures,heterojunction formation,multi-scale engineering,surface engineering,and phase engineering.The review also presents suggestions for designing high-performance MXene based on non-noble metals.It offers guidance on employing construction strategies for electrocatalysts.By leveraging the unique properties and tunability of MXene and implementing these modification methods,researchers can enhance the catalytic activity,stability,selectivity,and efficiency of MXene based non-noble metal catalysts. 展开更多
关键词 MXene overall water splitting Non-noble metal
下载PDF
Enhancing the activity of FeNi bimetallic electrocatalysts on overall water splitting by Nd_(2)O_(3)-induced FeNi lattice contraction
14
作者 Jiajia Li Yunong Qin +4 位作者 Tianyu Tan Qiancheng Zhu Bo Ouyang Erjun Kan Wenming Zhang 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期42-50,I0003,共10页
The development of high-efficiency and cost-effective bifunctional electrocatalysts for overall water splitting remains a formidable challenge.Herein,FeNi-Nd_(2)O_(3) nanoparticles anchored on N-doped carbon nanotubes... The development of high-efficiency and cost-effective bifunctional electrocatalysts for overall water splitting remains a formidable challenge.Herein,FeNi-Nd_(2)O_(3) nanoparticles anchored on N-doped carbon nanotubes(FeNi-Nd_(2)O_(3)/NCN) are designed for highly effective overall water splitting via a facile two-step hydrothermal approach.The synthetic FeNi-Nd_(2)O_(3) hetero-trimers(Fe 2p-Ni 2p-Nd 3d orbital coupling)on NCN achieve excellent oxygen evolution reaction(OER) and hydrogen evolution reaction(HER) activities with overpotentials of 270 and 120 mV at 10 mA cm^(-2) in 1 M KOH solution.Moreover,a small voltage of 1.52 V at 10 mA cm^(-2) is achieved when FeNi-Nd_(2)O_(3)/NCN is assessed as bifunctional catalyst for overall water splitting,which is superior to the typically integrated Pt/C and RuO_(2) counterparts(1.54 V at 10 mA cm^(-2)).The related characterizations including X-ray absorption fine structure(XAFS)spectroscopy show that the remarkably improved activity is originated from Nd_(2)O_(3)-induced FeNi bimetallic lattice contraction.Furthermore,density functional theory(DFT) calculations indicate that the lattice contraction reduces binding energies of intermediates by downshifting the position of FeNi bimetallic d-band center relative to the Fermi level to optimize catalytic performance.Therefore,the Nd_(2)O_(3)-induced FeNi bimetallic lattice contraction may provide a new perspective for designing and synthesizing innovative catalytic systems. 展开更多
关键词 Bifunctional catalyst FeNi-Nd_(2)O_(3)hetero-trimers Lattice contraction overall water splitting
下载PDF
Accurate design of spatially separated double active site in Bi_(4)NbO_(8)Cl single crystal to promote Z-Scheme photocatalytic overall water splitting
15
作者 Kailong Gao Hongxia Guo +4 位作者 Yanan Hu Hongbin He Mowen Li Xiaoming Gao Feng Fu 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期568-582,I0014,共16页
The efficiency of photocatalytic overall water splitting was mainly limited by the slow reaction kinetics of water oxidation.How to design effective surface active site to overcome the slow water oxidation reaction wa... The efficiency of photocatalytic overall water splitting was mainly limited by the slow reaction kinetics of water oxidation.How to design effective surface active site to overcome the slow water oxidation reaction was a major challenge.Here,we propose a strategy to accelerate surface water oxidation through the fabrication spatially separated double active sites.FeCoPi/Bi_(4)NbO_(8)Cl-OVs photocatalyst with spatially separated double active site was prepared by hydrogen reduction photoanode deposition method.Due to the high matching of the spatial loading positions of FeCoPi and OVs with the photogenerated charge distribution of Bi_(4)NbO_(8)Cl and corresponding reaction mechanisms of substrate,the FeCoPi and OVs on the(001)and(010)crystal planes of Bi_(4)NbO_(8)Cl photocatalyst provided surface active site for water oxidation reaction and electron shuttle reaction(Fe^(3+)/Fe^(2+)),respectively.Under visible light irradiation,the evolution O_(2)rate of FeCoPi/Bi_(4)NbO_(8)Cl OVs was 16.8μmol h^(-1),as 32.9 times as Bi_(4)NbO_(8)Cl.Furthermore,a hydrogen evolution co-catalyst PtRu@Cr_(2)O_(3)was prepared by sequential photodeposition method.Due to the introduction of Ru,the Schottky barrier between PbTiO_(3)and Pt was effectively reduced,which promoted the transfer of photogenerated electrons to PtRu@Cr_(2)O_(3)thermodynamically,the evolution H_(2)rate on PtRu@Cr_(2)O_(3)/PbTiO_(3)increased to 664.8 times.On based of the synchronous enhancement of the water oxidation performance on FeCoPi/Bi_(4)NbO_(8)Cl-OVs and water reduction performance on PtRu@Cr_(2)O_(3)/PbTiO_(3),a novel Z-Scheme photocatalytic overall water splitting system(FeCoPi/Bi_(4)NbO_(8)Cl-OVs)mediated by Fe^(3+)/Fe^(2+)had successfully constructed.Under visible light irradiation,the evolution rates of H_(2)and O_(2)were 2.5 and 1.3μmol h^(-1),respectively.This work can provide some reference for the design of active site and the controllable synthesis of OVs spatial position.On the other hand,the hydrogen evolution co catalyst(PtRu@Cr_(2)O_(3))and the co catalyst FeCoPi for oxygen evolution contributed to the construction of an overall water splitting system. 展开更多
关键词 Spatially separated double active sites FeCoPi/Bi_(4)NbO_(8)Cl-OVs Photocatalytic water oxidation Photocatalytic hydrogen evolution Hydrogen evolution co-catalyst PtRu@Cr_(2)O_(3) Z-Scheme photocatalytic overall water splitting system
下载PDF
Study on Overall Concept Planning of Terminal Correction Mortar Projectiles 被引量:1
16
作者 徐劲祥 《Journal of Beijing Institute of Technology》 EI CAS 2008年第2期127-132,共6页
The system composition, the operational principle of terminal correction mortar projectiles (TCMP) and the concept planning design of TCMP are researched in this paper. An overall design and aerodynamic configuratio... The system composition, the operational principle of terminal correction mortar projectiles (TCMP) and the concept planning design of TCMP are researched in this paper. An overall design and aerodynamic configuration layout for TCMP are made in this paper, and its aerodynamic coefficients are calculated by using computational fluid dynamics (CFD) software. Test results of TCMP simulated ballistic projectiles indicate the designed TCMP can satisfy the interior ballistic demand and has a fine flight stability. The drag coefficients identified from the radar velocity-time data are in accord with the CFD computed results. According to the exposure frequency of the ground laser designator, a four-quadrant impulse correction scheme and a high exposure frequency impulse correction scheme are brought. The latter can calculate the target azimuth angle by counting the times of the facula passing through one quadrant. Simulation results also show that the guidance precision of the velocity pursuit is higher than that of the body pursuit, and the detector axis is less circuitous. Researches on the typical trajectory indicate that the terminal impulse correction can improve the hit precision of TCMP remarkably. 展开更多
关键词 terminal correction mortar projectile overall concept planning trajectory simulation pursuit guidance law
下载PDF
The Application of Scenario Analysis in the Overall Planning of Land Use:A Case Study of Shangluo City in Shaanxi Province 被引量:1
17
作者 SUN Pi-ling YANG Hai-juan 《Asian Agricultural Research》 2012年第10期28-33,共6页
The overall planning of land use is a complex process of joint action of social system, natural and economic conditions. On the basis of summarizing the existing researches, we select Shaanxi's Shangluo City, loca... The overall planning of land use is a complex process of joint action of social system, natural and economic conditions. On the basis of summarizing the existing researches, we select Shaanxi's Shangluo City, located in the Qinba mountainous area as the study object, to expound the concept and steps of scenario analysis based on land use change data, under the guidance of ecological safety and sustainable development theory. We design four different scenarios of land use planning program in Shangluo City during the period 2006-2020, and use grey linear programming model to analyze each scenario. The results show that the scenario analysis is feasible in the adjustment of land use structure in Shangluo City; operable in the determining of land use planning program on a macro-municipal scale. 展开更多
关键词 overall planning of LAND use GREY linear programmi
下载PDF
Development and Prospect of Zoning Mode in the Three Rounds of Overall Land Use Planning of China 被引量:1
18
作者 Ying XIONG Zisheng YANG 《Asian Agricultural Research》 2018年第3期47-50,共4页
Zoning system is the basic mode of establishment of overall land use planning. In this study,the zoning mode and practice in the three rounds of overall land use planning that have been carried out in China were analy... Zoning system is the basic mode of establishment of overall land use planning. In this study,the zoning mode and practice in the three rounds of overall land use planning that have been carried out in China were analyzed and summarized firstly,and then some obvious problems existing in the implementation of the zoning mode were analyzed. Finally,countermeasures and suggestions were put forward to provide necessary reference for further development and improvement of the zoning mode and the development of overall land use planning at all levels in China. 展开更多
关键词 overall land use planning Zoning mode Regional zoning Land use zoning Land function zoning Construction land control zoning
下载PDF
Water pollution control planning for the Taizi River watershed
19
作者 Jiang Weigong Sun Hong(Benxi Environmental Monitoring Station, Liaoning Province ,Benxi 117021,China)Guo Huaicheng Song Guojun (Center for Environmental Sciences,Peking University.Beijing 100871.China) 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1996年第1期110-119,共10页
Water pollution control planning for the Taizi River watershed,a typical Chinese case study,is presented in this paper. Based on comprehensive analysis.water quality in the watershed was assessed and predicated;water ... Water pollution control planning for the Taizi River watershed,a typical Chinese case study,is presented in this paper. Based on comprehensive analysis.water quality in the watershed was assessed and predicated;water quality models for the river and reservoir were built;and function of water bodies and environmental assimilative capacity were determined ;and then the planning for industrial pollution sources and concentrated sewage treatment were made respectively. 展开更多
关键词 water pollution control planning water quality model benefit-cost analysis.
下载PDF
Overall Planning of Tour Routes: A Case Study of Tour Route Planning in Panzhihua City
20
作者 HUAN Shaojun NI Yan 《Journal of Landscape Research》 2013年第10期29-31,共3页
Taking overall planning of tour routes as the guiding concept of regional tourism development,one core,three subjects,three sections and three levels in the overall planning of tour routes were explored. Range,plannin... Taking overall planning of tour routes as the guiding concept of regional tourism development,one core,three subjects,three sections and three levels in the overall planning of tour routes were explored. Range,planning principle,optimized layout of travel channels,construction of tourist towns,construction of scenic areas,construction of highway landscapes along travel channels,construction of tourist distribution centers in the overall planning of tourist routes for Panzhihua City,Sichuan Province were elaborated. Signifi cance of the overall planning of tour routes was summarized. 展开更多
关键词 overall planning of TOUR routes Principle Eco-corridor Channel layout TOWN CONSTRUCTION SCENIC area CONSTRUCTION Landscape CONSTRUCTION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部