In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set f...In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.展开更多
Bus safety is a matter of great importance in many developing countries, with driving behaviors among bus drivers identified as a primary factor contributing to accidents. This concern is particularly amplified in mix...Bus safety is a matter of great importance in many developing countries, with driving behaviors among bus drivers identified as a primary factor contributing to accidents. This concern is particularly amplified in mixed traffic flow (MTF) environments with time pressure (TP). However, there is a lack of sufficient research exploring the relationships among these factors. This study consists of two papers that aim to investigate the impact of MTF environments with TP on the driving behaviors of bus drivers. While the first paper focuses on violated driving behaviors, this particular paper delves into mistake-prone driving behaviors (MDB). To collect data on MDB, as well as perceptions of MTF and TP, a questionnaire survey was implemented among bus drivers. Factor analyses were employed to create new measurements for validating MDB in MTF environments. The study utilized partial correlation and linear regression analyses with the Bayesian Model Averaging (BMA) method to explore the relationships between MDB and MTF/TP. The results revealed a modified scale for MDB. Two MTF factors and two TP factors were found to be significantly associated with MDB. A high presence of motorcycles and dangerous interactions among vehicles were not found to be associated with MDB among bus drivers. However, bus drivers who perceived motorcyclists as aggressive, considered road users’ traffic habits as unsafe, and perceived bus routes’ punctuality and organization as very strict were more likely to exhibit MDB. Moreover, the results from the three MDB predictive models demonstrated a positive impact of bus route organization on MDB among bus drivers. The study also examined various relationships between the socio-demographic characteristics of bus drivers and MDB. These findings are of practical significance in developing interventions aimed at reducing MDB among bus drivers operating in MTF environments with TP.展开更多
The complexity of signal controlled traffic largely stems from the various driving behaviors developed in response to the traffic signal. However, the existing models take a few driving behaviors into account and cons...The complexity of signal controlled traffic largely stems from the various driving behaviors developed in response to the traffic signal. However, the existing models take a few driving behaviors into account and consequently the traffic dynamics has not been completely explored. Therefore, a new cellular automaton model, which incorporates the driving behaviors typically manifesting during the different stages when the vehicles are moving toward a traffic light, is proposed in this paper. Numerical simulations have demonstrated that the proposed model can produce the spontaneous traffic breakdown and the dissolution of the over-saturated traffic phenomena. Furthermore, the simulation results indicate that the slow-to-start behavior and the inch-forward behavior can foster the traffic breakdown. Particularly, it has been discovered that the over-saturated traffic can be revised to be an under-saturated state when the slow-down behavior is activated after the spontaneous breakdown. Finally, the contributions of the driving behaviors on the traffic breakdown have been examined.展开更多
In this paper, we propose a modified traffic model in which a single car moves through a sequence of traffic lights controlled by a step function instead of a sine function. In contrast to the previous work [Phys. Rev...In this paper, we propose a modified traffic model in which a single car moves through a sequence of traffic lights controlled by a step function instead of a sine function. In contrast to the previous work [Phys. Rev. E 70 (2004) 016107], we have investigated in detail the dependence of the behavior on four parameters, ω,α,η and α1, and given three kinds of bifurcation diagrams, which show three kinds of complex behaviors. We have found that in this model there are chaotic and complex periodic motions, as well as special singularities. We have also analyzed the characteristic of the complex period motion and the essential feature of the singularity.展开更多
Understanding the causes and solutions of road traffic accidents is important for developing road and action plans in a country. In Vietnam, awareness of traffic participants is the main cause of serious traffic accid...Understanding the causes and solutions of road traffic accidents is important for developing road and action plans in a country. In Vietnam, awareness of traffic participants is the main cause of serious traffic accidents. In recent years, the number of road traffic accidents in Tuyen Quang province with deaths has decreased, but the number of accidents has increased significantly. The article uses data on traffic accidents in Tuyen Quang over the (2016-2023) has been analytically reviewed. From there, analyze accident characteristics and causes of traffic accidents in Tuyen Quang province, and propose solutions to improve traffic safety in Tuyen Quang, Vietnam. The findings can be information for managers and researchers interested in studying the province of Tuyen Quang, Vietnam road traffic safety. Additionally, the findings have led the government to achieve national targets in reducing the number of accidents and serious injuries.展开更多
In order to give a new way for modeling driving behavior, identifying road traffic accident causation and solving a variety of road traffic safety problems such as driving errors prevention and driving behavior analys...In order to give a new way for modeling driving behavior, identifying road traffic accident causation and solving a variety of road traffic safety problems such as driving errors prevention and driving behavior analysis, a new driving behavior shaping model is proposed, which could be used to assess the degree of effect of driving error upon road traffic safety. Driver behavior shaping model based on driving reliability and safety analysis could be used to identify the road traffic accident causation, to supply data for driver's behavior training, to evaluate driving procedures, to human factor design of road traffic system.展开更多
The vibration behavior of the ground and houses caused by monorail traffic is discussed in this paper. The environmental ground vibration problem discussed herein occurs in a residential area near a monorail used for ...The vibration behavior of the ground and houses caused by monorail traffic is discussed in this paper. The environmental ground vibration problem discussed herein occurs in a residential area near a monorail used for public transportation, Vibrations were measured on the ground at the side of monorail piers lacing the residential area and within the affected houses. Results indicate that the vibration level in the house was 60 dB or more, a level high enough to warrant complaints, Peculiar geological and geographical features are thought to contribute to the amplification of low frequency (-10 Hz) ground vibrations to irritable levels in these homes even though a distance of≥30 m separates the residential area and the monorail.展开更多
The challenge of keeping and getting new customers drives the development of new practices to meet the consumption needs of increasingly tends to micro-segmentation of product and consumer market. The new consumption ...The challenge of keeping and getting new customers drives the development of new practices to meet the consumption needs of increasingly tends to micro-segmentation of product and consumer market. The new consumption habits of brazilians brought new prospects for market. The objective of this paper is to develop of a dynamic vehicle routing system supported by the behavior of urban traffic in the city ofSao Paulo using Neuro Fuzzy Network. The methodology of this paper consists in the capture of relevant events that interfere with the flow of traffic of the city of Sao Paulo and implementation of a Fuzzy Neural Network trained with these events in order to foresee the traffic behavior. The system offers three labels of hierarchical routing, thus is possible to consider not only the basic factors of routing, but too external factors that directly influence on the flow of traffic and the disruption which may be avoided in large cities, through alternative routes (dynamic vehicle routing). Predicting the behavior of traffic represents the strategic level routing, dynamic vehicle routing is the tactical level, and routing algorithms to the operational level. This paper will not be discussed the operational level.展开更多
In the upcoming large-scale Internet of Things(Io T),it is increasingly challenging to defend against malicious traffic,due to the heterogeneity of Io T devices and the diversity of Io T communication protocols.In thi...In the upcoming large-scale Internet of Things(Io T),it is increasingly challenging to defend against malicious traffic,due to the heterogeneity of Io T devices and the diversity of Io T communication protocols.In this paper,we propose a semi-supervised learning-based approach to detect malicious traffic at the access side.It overcomes the resource-bottleneck problem of traditional malicious traffic defenders which are deployed at the victim side,and also is free of labeled traffic data in model training.Specifically,we design a coarse-grained behavior model of Io T devices by self-supervised learning with unlabeled traffic data.Then,we fine-tune this model to improve its accuracy in malicious traffic detection by adopting a transfer learning method using a small amount of labeled data.Experimental results show that our method can achieve the accuracy of 99.52%and the F1-score of 99.52%with only 1%of the labeled training data based on the CICDDoS2019 dataset.Moreover,our method outperforms the stateof-the-art supervised learning-based methods in terms of accuracy,precision,recall and F1-score with 1%of the training data.展开更多
Explicit traffic control measures are absent in uncontrolled intersections which make them susceptible to frequent conflicts and resulting collisions between vehicles. In developing countries like India, drivers at su...Explicit traffic control measures are absent in uncontrolled intersections which make them susceptible to frequent conflicts and resulting collisions between vehicles. In developing countries like India, drivers at such intersections do not yield to higher priority movements which cause more crashes between vehicles. The objective of this study is to analyze and model the gap acceptance behavior of minor street drivers at uncontrolled T-intersections considering their aggressive nature. Three intersections in the northeast region of India have been selected as the case study area. Preliminary analysis of the data revealed that drivers behave aggressively, not because they have to wait for a long time at the stop line, but because of their lack of respect for traffic rules. Binary logit models are developed for minor road right turning vehicles which show that gap acceptance behavior is influenced by gap duration, clearing time and aggressive nature of drivers. The equations obtained were used to estimate the critical gaps for aggressive and non-aggressive drivers. Critical gaps are also calculated using an existing method called clearing behavior approach. It is also shown that the estimation of critical gap is more realistic if clearing time and aggressive behavior of drivers are considered.展开更多
In order to analyze and learn the difference in car-following behavior between normal and rainy days, we first collect car-following trajectory data of an urban elevated road on normal and rainy days by microwave rada...In order to analyze and learn the difference in car-following behavior between normal and rainy days, we first collect car-following trajectory data of an urban elevated road on normal and rainy days by microwave radar and analyze the differences in speed, relative speed, acceleration, space headway, and time headway among data through statistics. Secondly, owing to the time-series characteristics of car-following data, we use the long short-term memory(LSTM) neural network optimized by attention mechanism(AM) and sparrow search algorithm(SSA) to learn the different car-following behaviors under different weather conditions and build corresponding models(ASL-Normal, ASL-Rain, where ASL stands for AM-SSA-LSTM), respectively. Finally, the simulation test shows that the mean square error(MSE) and reciprocal of time-to-collision(RTTC) of the ASL model are better than those of LSTM and intelligent diver model(IDM), which is closer to the real data. The ASL model can better learn different driving behaviors on normal and rainy days. However,it has a higher sensitivity to weather conditions from cross test on normal and rainy data-sets which need classification training or sample diversification processing. In the car-following platoon simulation, the stability performances of two models are excellent, which can describe the basic characteristics of traffic flow on normal and rainy days. Comparing with ASL-Rain model, the convergence time of ASL-Normal is shorter, reflecting that cautious driving behavior on rainy days will reduce traffic efficiency to a certain extent. However, ASL-Normal model produces a more severe and frequent traffic oscillation within a shorter period because of aggressive driving behavior on normal days.展开更多
Traffic congestion is associated with increased environmental pollutions, as well as reduced socio-economic productivity due to significant delays in travel times. The consequences are worse in least developed countri...Traffic congestion is associated with increased environmental pollutions, as well as reduced socio-economic productivity due to significant delays in travel times. The consequences are worse in least developed countries where motorized road transport networks are often inefficiently managed in addition to being largely underdeveloped. Recent research on traffic congestion has mostly focused on infrastructural aspects of road networks, with little or no emphasis at all on motorists’ on-the-road behavior (MB). The current study thus aimed to bridge this knowledge gap by characterizing traffic jam incidents (TJI) observed over a period of 80 days in Uganda’s Capital City, Kampala. MB as well as road network infrastructural factors such as road blockage (RB), were captured for each of the observed TJI. A total of 483 peak-time TJI were recorded, and exploratory data analysis (EDA) subsequently performed on the TJI dataset. EDA involved Hierarchical clustering analysis (HCA) and K-means clustering of the TJI dataset, as well as a detailed descriptive statistical analysis of both the entire dataset and the emerging TJI clusters. A highlight finding of this study is that 48.2% of the observed TJIs were as a result of on-the-road motorist behavior. Furthermore, the intervention of traffic police officers in a bid to regulate traffic flow was equally responsible for 25.9% of the TJIs observed in this study. Overall, these results indicate that whereas road infrastructural improvement is warranted in order to improve traffic flow, introducing interventions to address inappropriate on-the-road motorists’ behavior could alone improve traffic flow in Kampala, by over 48%. Additionally, in-order to effectively regulate traffic flow in Kampala and other least developed cities with similar traffic congestion management practices, motorists’ on-the-road behavior ought to be factored into any data-driven mechanisms deployed to regulate traffic flow and thus potentially significantly curbing traffic congestion.展开更多
Countdown signals for motorized vehicles,which are intended to ensure safety on the road and regulate motor vehicle speed limits at road intersections,are still considered a relatively novel concept.These signals have...Countdown signals for motorized vehicles,which are intended to ensure safety on the road and regulate motor vehicle speed limits at road intersections,are still considered a relatively novel concept.These signals have been adopted by only a few countries,and the number of cities that use them is limited.This review aims to summarize the effects of countdown signals on traffic safety and efficiency and to determine the consistency and differences of existing research propositions on the matter.Based on the review,considerable research presents evidently different conclusions in the areas of driver red-light running and traffic safety.Particularly,some studies propose that countdown signals reinforce traffic safety,whereas others consider that such signals adversely affect traffic safety.Meanwhile,related literature provides varying conclusions on the aspect of traffic efficiency for vehicle headway.At present,the number of studies conducted regarding the driving behaviors of motorists toward countdown-signalized intersections is insufficient.Accordingly,such inadequate diversity in research causes difficulty in completely assessing the benefits and disadvantages of countdown signals.In this paper,an important future research direction on microcosmic driving psychological and physiological data combined with macro-driving behavior is proposed.展开更多
基金National Natural Science Foundation of China(U2133208,U20A20161)National Natural Science Foundation of China(No.62273244)Sichuan Science and Technology Program(No.2022YFG0180).
文摘In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.
文摘Bus safety is a matter of great importance in many developing countries, with driving behaviors among bus drivers identified as a primary factor contributing to accidents. This concern is particularly amplified in mixed traffic flow (MTF) environments with time pressure (TP). However, there is a lack of sufficient research exploring the relationships among these factors. This study consists of two papers that aim to investigate the impact of MTF environments with TP on the driving behaviors of bus drivers. While the first paper focuses on violated driving behaviors, this particular paper delves into mistake-prone driving behaviors (MDB). To collect data on MDB, as well as perceptions of MTF and TP, a questionnaire survey was implemented among bus drivers. Factor analyses were employed to create new measurements for validating MDB in MTF environments. The study utilized partial correlation and linear regression analyses with the Bayesian Model Averaging (BMA) method to explore the relationships between MDB and MTF/TP. The results revealed a modified scale for MDB. Two MTF factors and two TP factors were found to be significantly associated with MDB. A high presence of motorcycles and dangerous interactions among vehicles were not found to be associated with MDB among bus drivers. However, bus drivers who perceived motorcyclists as aggressive, considered road users’ traffic habits as unsafe, and perceived bus routes’ punctuality and organization as very strict were more likely to exhibit MDB. Moreover, the results from the three MDB predictive models demonstrated a positive impact of bus route organization on MDB among bus drivers. The study also examined various relationships between the socio-demographic characteristics of bus drivers and MDB. These findings are of practical significance in developing interventions aimed at reducing MDB among bus drivers operating in MTF environments with TP.
基金supported by the National Basic Research Program of China(Grand No.2012CB723303)the Beijing Committee of Science and Technology,China(Grand No.Z1211000003120100)
文摘The complexity of signal controlled traffic largely stems from the various driving behaviors developed in response to the traffic signal. However, the existing models take a few driving behaviors into account and consequently the traffic dynamics has not been completely explored. Therefore, a new cellular automaton model, which incorporates the driving behaviors typically manifesting during the different stages when the vehicles are moving toward a traffic light, is proposed in this paper. Numerical simulations have demonstrated that the proposed model can produce the spontaneous traffic breakdown and the dissolution of the over-saturated traffic phenomena. Furthermore, the simulation results indicate that the slow-to-start behavior and the inch-forward behavior can foster the traffic breakdown. Particularly, it has been discovered that the over-saturated traffic can be revised to be an under-saturated state when the slow-down behavior is activated after the spontaneous breakdown. Finally, the contributions of the driving behaviors on the traffic breakdown have been examined.
基金Prof. Z.R. Yang provided helpful guidance to this work. We are very thankful to Prof. Z.R. Yang and grateful to Profs. Z.G. Zheng, Z. Gao, and W.A. Guo, who provided many good suggestions to this work. We also acknowledge fruitful discussions with Drs. J.X. Le, X,M, Kong, X,H, Li, and J.Q. Tao.
文摘In this paper, we propose a modified traffic model in which a single car moves through a sequence of traffic lights controlled by a step function instead of a sine function. In contrast to the previous work [Phys. Rev. E 70 (2004) 016107], we have investigated in detail the dependence of the behavior on four parameters, ω,α,η and α1, and given three kinds of bifurcation diagrams, which show three kinds of complex behaviors. We have found that in this model there are chaotic and complex periodic motions, as well as special singularities. We have also analyzed the characteristic of the complex period motion and the essential feature of the singularity.
文摘Understanding the causes and solutions of road traffic accidents is important for developing road and action plans in a country. In Vietnam, awareness of traffic participants is the main cause of serious traffic accidents. In recent years, the number of road traffic accidents in Tuyen Quang province with deaths has decreased, but the number of accidents has increased significantly. The article uses data on traffic accidents in Tuyen Quang over the (2016-2023) has been analytically reviewed. From there, analyze accident characteristics and causes of traffic accidents in Tuyen Quang province, and propose solutions to improve traffic safety in Tuyen Quang, Vietnam. The findings can be information for managers and researchers interested in studying the province of Tuyen Quang, Vietnam road traffic safety. Additionally, the findings have led the government to achieve national targets in reducing the number of accidents and serious injuries.
文摘In order to give a new way for modeling driving behavior, identifying road traffic accident causation and solving a variety of road traffic safety problems such as driving errors prevention and driving behavior analysis, a new driving behavior shaping model is proposed, which could be used to assess the degree of effect of driving error upon road traffic safety. Driver behavior shaping model based on driving reliability and safety analysis could be used to identify the road traffic accident causation, to supply data for driver's behavior training, to evaluate driving procedures, to human factor design of road traffic system.
文摘The vibration behavior of the ground and houses caused by monorail traffic is discussed in this paper. The environmental ground vibration problem discussed herein occurs in a residential area near a monorail used for public transportation, Vibrations were measured on the ground at the side of monorail piers lacing the residential area and within the affected houses. Results indicate that the vibration level in the house was 60 dB or more, a level high enough to warrant complaints, Peculiar geological and geographical features are thought to contribute to the amplification of low frequency (-10 Hz) ground vibrations to irritable levels in these homes even though a distance of≥30 m separates the residential area and the monorail.
文摘The challenge of keeping and getting new customers drives the development of new practices to meet the consumption needs of increasingly tends to micro-segmentation of product and consumer market. The new consumption habits of brazilians brought new prospects for market. The objective of this paper is to develop of a dynamic vehicle routing system supported by the behavior of urban traffic in the city ofSao Paulo using Neuro Fuzzy Network. The methodology of this paper consists in the capture of relevant events that interfere with the flow of traffic of the city of Sao Paulo and implementation of a Fuzzy Neural Network trained with these events in order to foresee the traffic behavior. The system offers three labels of hierarchical routing, thus is possible to consider not only the basic factors of routing, but too external factors that directly influence on the flow of traffic and the disruption which may be avoided in large cities, through alternative routes (dynamic vehicle routing). Predicting the behavior of traffic represents the strategic level routing, dynamic vehicle routing is the tactical level, and routing algorithms to the operational level. This paper will not be discussed the operational level.
基金supported in part by the National Key R&D Program of China under Grant 2018YFA0701601part by the National Natural Science Foundation of China(Grant No.U22A2002,61941104,62201605)part by Tsinghua University-China Mobile Communications Group Co.,Ltd.Joint Institute。
文摘In the upcoming large-scale Internet of Things(Io T),it is increasingly challenging to defend against malicious traffic,due to the heterogeneity of Io T devices and the diversity of Io T communication protocols.In this paper,we propose a semi-supervised learning-based approach to detect malicious traffic at the access side.It overcomes the resource-bottleneck problem of traditional malicious traffic defenders which are deployed at the victim side,and also is free of labeled traffic data in model training.Specifically,we design a coarse-grained behavior model of Io T devices by self-supervised learning with unlabeled traffic data.Then,we fine-tune this model to improve its accuracy in malicious traffic detection by adopting a transfer learning method using a small amount of labeled data.Experimental results show that our method can achieve the accuracy of 99.52%and the F1-score of 99.52%with only 1%of the labeled training data based on the CICDDoS2019 dataset.Moreover,our method outperforms the stateof-the-art supervised learning-based methods in terms of accuracy,precision,recall and F1-score with 1%of the training data.
文摘Explicit traffic control measures are absent in uncontrolled intersections which make them susceptible to frequent conflicts and resulting collisions between vehicles. In developing countries like India, drivers at such intersections do not yield to higher priority movements which cause more crashes between vehicles. The objective of this study is to analyze and model the gap acceptance behavior of minor street drivers at uncontrolled T-intersections considering their aggressive nature. Three intersections in the northeast region of India have been selected as the case study area. Preliminary analysis of the data revealed that drivers behave aggressively, not because they have to wait for a long time at the stop line, but because of their lack of respect for traffic rules. Binary logit models are developed for minor road right turning vehicles which show that gap acceptance behavior is influenced by gap duration, clearing time and aggressive nature of drivers. The equations obtained were used to estimate the critical gaps for aggressive and non-aggressive drivers. Critical gaps are also calculated using an existing method called clearing behavior approach. It is also shown that the estimation of critical gap is more realistic if clearing time and aggressive behavior of drivers are considered.
基金Project supported by the National Natural Science Foundation of China (Grant No. 52072108)the Natural Science Foundation of Anhui Province, China (Grant No. 2208085ME148)the Open Fund for State Key Laboratory of Cognitive Intelligence, China (Grant No. W2022JSKF0504)。
文摘In order to analyze and learn the difference in car-following behavior between normal and rainy days, we first collect car-following trajectory data of an urban elevated road on normal and rainy days by microwave radar and analyze the differences in speed, relative speed, acceleration, space headway, and time headway among data through statistics. Secondly, owing to the time-series characteristics of car-following data, we use the long short-term memory(LSTM) neural network optimized by attention mechanism(AM) and sparrow search algorithm(SSA) to learn the different car-following behaviors under different weather conditions and build corresponding models(ASL-Normal, ASL-Rain, where ASL stands for AM-SSA-LSTM), respectively. Finally, the simulation test shows that the mean square error(MSE) and reciprocal of time-to-collision(RTTC) of the ASL model are better than those of LSTM and intelligent diver model(IDM), which is closer to the real data. The ASL model can better learn different driving behaviors on normal and rainy days. However,it has a higher sensitivity to weather conditions from cross test on normal and rainy data-sets which need classification training or sample diversification processing. In the car-following platoon simulation, the stability performances of two models are excellent, which can describe the basic characteristics of traffic flow on normal and rainy days. Comparing with ASL-Rain model, the convergence time of ASL-Normal is shorter, reflecting that cautious driving behavior on rainy days will reduce traffic efficiency to a certain extent. However, ASL-Normal model produces a more severe and frequent traffic oscillation within a shorter period because of aggressive driving behavior on normal days.
文摘Traffic congestion is associated with increased environmental pollutions, as well as reduced socio-economic productivity due to significant delays in travel times. The consequences are worse in least developed countries where motorized road transport networks are often inefficiently managed in addition to being largely underdeveloped. Recent research on traffic congestion has mostly focused on infrastructural aspects of road networks, with little or no emphasis at all on motorists’ on-the-road behavior (MB). The current study thus aimed to bridge this knowledge gap by characterizing traffic jam incidents (TJI) observed over a period of 80 days in Uganda’s Capital City, Kampala. MB as well as road network infrastructural factors such as road blockage (RB), were captured for each of the observed TJI. A total of 483 peak-time TJI were recorded, and exploratory data analysis (EDA) subsequently performed on the TJI dataset. EDA involved Hierarchical clustering analysis (HCA) and K-means clustering of the TJI dataset, as well as a detailed descriptive statistical analysis of both the entire dataset and the emerging TJI clusters. A highlight finding of this study is that 48.2% of the observed TJIs were as a result of on-the-road motorist behavior. Furthermore, the intervention of traffic police officers in a bid to regulate traffic flow was equally responsible for 25.9% of the TJIs observed in this study. Overall, these results indicate that whereas road infrastructural improvement is warranted in order to improve traffic flow, introducing interventions to address inappropriate on-the-road motorists’ behavior could alone improve traffic flow in Kampala, by over 48%. Additionally, in-order to effectively regulate traffic flow in Kampala and other least developed cities with similar traffic congestion management practices, motorists’ on-the-road behavior ought to be factored into any data-driven mechanisms deployed to regulate traffic flow and thus potentially significantly curbing traffic congestion.
基金support provided by the Shandong Provincial Natural Science Foundation of China(ZR2020MG021 and ZR2022MF332)the Humanities and Social Science Planning Fund of Chinese Ministry of Education(18YJAZH067).
文摘Countdown signals for motorized vehicles,which are intended to ensure safety on the road and regulate motor vehicle speed limits at road intersections,are still considered a relatively novel concept.These signals have been adopted by only a few countries,and the number of cities that use them is limited.This review aims to summarize the effects of countdown signals on traffic safety and efficiency and to determine the consistency and differences of existing research propositions on the matter.Based on the review,considerable research presents evidently different conclusions in the areas of driver red-light running and traffic safety.Particularly,some studies propose that countdown signals reinforce traffic safety,whereas others consider that such signals adversely affect traffic safety.Meanwhile,related literature provides varying conclusions on the aspect of traffic efficiency for vehicle headway.At present,the number of studies conducted regarding the driving behaviors of motorists toward countdown-signalized intersections is insufficient.Accordingly,such inadequate diversity in research causes difficulty in completely assessing the benefits and disadvantages of countdown signals.In this paper,an important future research direction on microcosmic driving psychological and physiological data combined with macro-driving behavior is proposed.