Understanding the causes and solutions of road traffic accidents is important for developing road and action plans in a country. In Vietnam, awareness of traffic participants is the main cause of serious traffic accid...Understanding the causes and solutions of road traffic accidents is important for developing road and action plans in a country. In Vietnam, awareness of traffic participants is the main cause of serious traffic accidents. In recent years, the number of road traffic accidents in Tuyen Quang province with deaths has decreased, but the number of accidents has increased significantly. The article uses data on traffic accidents in Tuyen Quang over the (2016-2023) has been analytically reviewed. From there, analyze accident characteristics and causes of traffic accidents in Tuyen Quang province, and propose solutions to improve traffic safety in Tuyen Quang, Vietnam. The findings can be information for managers and researchers interested in studying the province of Tuyen Quang, Vietnam road traffic safety. Additionally, the findings have led the government to achieve national targets in reducing the number of accidents and serious injuries.展开更多
Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction acc...Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction accuracy of most existing models, which simply stack temporal and spatial modules and fail to capture spatial-temporal features effectively. To improve the prediction accuracy, a multi-head attention spatial-temporal graph neural network (MSTNet) is proposed in this paper. First, the traffic data is decomposed into unique time spans that conform to positive rules, and valuable traffic node attributes are mined through an adaptive graph structure. Second, time and spatial features are captured using a multi-head attention spatial-temporal module. Finally, a multi-step prediction module is used to achieve future traffic condition prediction. Numerical experiments were conducted on an open-source dataset, and the results demonstrate that MSTNet performs well in spatial-temporal feature extraction and achieves more positive forecasting results than the baseline methods.展开更多
This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential p...This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential predictors, including traffic volume, prevailing weather conditions, roadway characteristics and features, drivers’ age and gender, and number of lanes. Based on the output of the model and the variables’ importance factors, seven significant variables are identified and used for further analysis to improve the performance of models. The model is optimized by systematically changing the parameters, including the number of hidden layers and the activation function of both the hidden and output layers. The performances of the MLANN models are evaluated using the percentage of the achieved accuracy, R-squared, and Sum of Square Error (SSE) functions.展开更多
Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion with...Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion within elevator systems. Many passengers experience dissatisfaction with prolonged wait times, leading to impatience and frustration among building occupants. The widespread adoption of neural networks and deep learning technologies across various fields and industries represents a significant paradigm shift, and unlocking new avenues for innovation and advancement. These cutting-edge technologies offer unprecedented opportunities to address complex challenges and optimize processes in diverse domains. In this study, LSTM (Long Short-Term Memory) network technology is leveraged to analyze elevator traffic flow within a typical office building. By harnessing the predictive capabilities of LSTM, the research aims to contribute to advancements in elevator group control design, ultimately enhancing the functionality and efficiency of vertical transportation systems in built environments. The findings of this research have the potential to reference the development of intelligent elevator management systems, capable of dynamically adapting to fluctuating passenger demand and optimizing elevator usage in real-time. By enhancing the efficiency and functionality of vertical transportation systems, the research contributes to creating more sustainable, accessible, and user-friendly living environments for individuals across diverse demographics.展开更多
Aiming at solving the problem of missed detection and low accuracy in detecting traffic signs in the wild, an improved method of YOLOv8 is proposed. Firstly, combined with the characteristics of small target objects i...Aiming at solving the problem of missed detection and low accuracy in detecting traffic signs in the wild, an improved method of YOLOv8 is proposed. Firstly, combined with the characteristics of small target objects in the actual scene, this paper further adds blur and noise operation. Then, the asymptotic feature pyramid network (AFPN) is introduced to highlight the influence of key layer features after feature fusion, and simultaneously solve the direct interaction of non-adjacent layers. Experimental results on the TT100K dataset show that compared with the YOLOv8, the detection accuracy and recall are higher. .展开更多
A network analyzer can often comprehend many protocols, which enables it to display talks taking place between hosts over a network. A network analyzer analyzes the device or network response and measures for the oper...A network analyzer can often comprehend many protocols, which enables it to display talks taking place between hosts over a network. A network analyzer analyzes the device or network response and measures for the operator to keep an eye on the network’s or object’s performance in an RF circuit. The purpose of the following research includes analyzing the capabilities of NetFlow analyzer to measure various parts, including filters, mixers, frequency sensitive networks, transistors, and other RF-based instruments. NetFlow Analyzer is a network traffic analyzer that measures the network parameters of electrical networks. Although there are other types of network parameter sets including Y, Z, & H-parameters, these instruments are typically employed to measure S-parameters since transmission & reflection of electrical networks are simple to calculate at high frequencies. These analyzers are widely employed to distinguish between two-port networks, including filters and amplifiers. By allowing the user to view the actual data that is sent over a network, packet by packet, a network analyzer informs you of what is happening there. Also, this research will contain the design model of NetFlow Analyzer that Measurements involving transmission and reflection use. Gain, insertion loss, and transmission coefficient are measured in transmission measurements, whereas return loss, reflection coefficient, impedance, and other variables are measured in reflection measurements. These analyzers’ operational frequencies vary from 1 Hz to 1.5 THz. These analyzers can also be used to examine stability in measurements of open loops, audio components, and ultrasonics.展开更多
This study develops a procedure to rank agencies based on their incident responses using roadway clearance times for crashes. This analysis is not intended to grade agencies but to assist in identifying agencies requi...This study develops a procedure to rank agencies based on their incident responses using roadway clearance times for crashes. This analysis is not intended to grade agencies but to assist in identifying agencies requiring more training or resources for incident management. Previous NCHRP reports discussed usage of different factors including incident severity, roadway characteristics, number of lanes involved and time of incident separately for estimating the performance. However, it does not tell us how to incorporate all the factors at the same time. Thus, this study aims to account for multiple factors to ensure fair comparisons. This study used 149,174 crashes from Iowa that occurred from 2018 to 2021. A Tobit regression model was used to find the effect of different variables on roadway clearance time. Variables that cannot be controlled directly by agencies such as crash severity, roadway type, weather conditions, lighting conditions, etc., were included in the analysis as it helps to reduce bias in the ranking procedure. Then clearance time of each crash is normalized into a base condition using the regression coefficients. The normalization makes the process more efficient as the effect of uncontrollable factors has already been mitigated. Finally, the agencies were ranked by their average normalized roadway clearance time. This ranking process allows agencies to track their performance of previous crashes, can be used in identifying low performing agencies that could use additional resources and training, and can be used to identify high performing agencies to recognize for their efforts and performance.展开更多
文摘Understanding the causes and solutions of road traffic accidents is important for developing road and action plans in a country. In Vietnam, awareness of traffic participants is the main cause of serious traffic accidents. In recent years, the number of road traffic accidents in Tuyen Quang province with deaths has decreased, but the number of accidents has increased significantly. The article uses data on traffic accidents in Tuyen Quang over the (2016-2023) has been analytically reviewed. From there, analyze accident characteristics and causes of traffic accidents in Tuyen Quang province, and propose solutions to improve traffic safety in Tuyen Quang, Vietnam. The findings can be information for managers and researchers interested in studying the province of Tuyen Quang, Vietnam road traffic safety. Additionally, the findings have led the government to achieve national targets in reducing the number of accidents and serious injuries.
文摘Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction accuracy of most existing models, which simply stack temporal and spatial modules and fail to capture spatial-temporal features effectively. To improve the prediction accuracy, a multi-head attention spatial-temporal graph neural network (MSTNet) is proposed in this paper. First, the traffic data is decomposed into unique time spans that conform to positive rules, and valuable traffic node attributes are mined through an adaptive graph structure. Second, time and spatial features are captured using a multi-head attention spatial-temporal module. Finally, a multi-step prediction module is used to achieve future traffic condition prediction. Numerical experiments were conducted on an open-source dataset, and the results demonstrate that MSTNet performs well in spatial-temporal feature extraction and achieves more positive forecasting results than the baseline methods.
文摘This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential predictors, including traffic volume, prevailing weather conditions, roadway characteristics and features, drivers’ age and gender, and number of lanes. Based on the output of the model and the variables’ importance factors, seven significant variables are identified and used for further analysis to improve the performance of models. The model is optimized by systematically changing the parameters, including the number of hidden layers and the activation function of both the hidden and output layers. The performances of the MLANN models are evaluated using the percentage of the achieved accuracy, R-squared, and Sum of Square Error (SSE) functions.
文摘Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion within elevator systems. Many passengers experience dissatisfaction with prolonged wait times, leading to impatience and frustration among building occupants. The widespread adoption of neural networks and deep learning technologies across various fields and industries represents a significant paradigm shift, and unlocking new avenues for innovation and advancement. These cutting-edge technologies offer unprecedented opportunities to address complex challenges and optimize processes in diverse domains. In this study, LSTM (Long Short-Term Memory) network technology is leveraged to analyze elevator traffic flow within a typical office building. By harnessing the predictive capabilities of LSTM, the research aims to contribute to advancements in elevator group control design, ultimately enhancing the functionality and efficiency of vertical transportation systems in built environments. The findings of this research have the potential to reference the development of intelligent elevator management systems, capable of dynamically adapting to fluctuating passenger demand and optimizing elevator usage in real-time. By enhancing the efficiency and functionality of vertical transportation systems, the research contributes to creating more sustainable, accessible, and user-friendly living environments for individuals across diverse demographics.
文摘Aiming at solving the problem of missed detection and low accuracy in detecting traffic signs in the wild, an improved method of YOLOv8 is proposed. Firstly, combined with the characteristics of small target objects in the actual scene, this paper further adds blur and noise operation. Then, the asymptotic feature pyramid network (AFPN) is introduced to highlight the influence of key layer features after feature fusion, and simultaneously solve the direct interaction of non-adjacent layers. Experimental results on the TT100K dataset show that compared with the YOLOv8, the detection accuracy and recall are higher. .
文摘A network analyzer can often comprehend many protocols, which enables it to display talks taking place between hosts over a network. A network analyzer analyzes the device or network response and measures for the operator to keep an eye on the network’s or object’s performance in an RF circuit. The purpose of the following research includes analyzing the capabilities of NetFlow analyzer to measure various parts, including filters, mixers, frequency sensitive networks, transistors, and other RF-based instruments. NetFlow Analyzer is a network traffic analyzer that measures the network parameters of electrical networks. Although there are other types of network parameter sets including Y, Z, & H-parameters, these instruments are typically employed to measure S-parameters since transmission & reflection of electrical networks are simple to calculate at high frequencies. These analyzers are widely employed to distinguish between two-port networks, including filters and amplifiers. By allowing the user to view the actual data that is sent over a network, packet by packet, a network analyzer informs you of what is happening there. Also, this research will contain the design model of NetFlow Analyzer that Measurements involving transmission and reflection use. Gain, insertion loss, and transmission coefficient are measured in transmission measurements, whereas return loss, reflection coefficient, impedance, and other variables are measured in reflection measurements. These analyzers’ operational frequencies vary from 1 Hz to 1.5 THz. These analyzers can also be used to examine stability in measurements of open loops, audio components, and ultrasonics.
文摘This study develops a procedure to rank agencies based on their incident responses using roadway clearance times for crashes. This analysis is not intended to grade agencies but to assist in identifying agencies requiring more training or resources for incident management. Previous NCHRP reports discussed usage of different factors including incident severity, roadway characteristics, number of lanes involved and time of incident separately for estimating the performance. However, it does not tell us how to incorporate all the factors at the same time. Thus, this study aims to account for multiple factors to ensure fair comparisons. This study used 149,174 crashes from Iowa that occurred from 2018 to 2021. A Tobit regression model was used to find the effect of different variables on roadway clearance time. Variables that cannot be controlled directly by agencies such as crash severity, roadway type, weather conditions, lighting conditions, etc., were included in the analysis as it helps to reduce bias in the ranking procedure. Then clearance time of each crash is normalized into a base condition using the regression coefficients. The normalization makes the process more efficient as the effect of uncontrollable factors has already been mitigated. Finally, the agencies were ranked by their average normalized roadway clearance time. This ranking process allows agencies to track their performance of previous crashes, can be used in identifying low performing agencies that could use additional resources and training, and can be used to identify high performing agencies to recognize for their efforts and performance.