期刊文献+
共找到159,959篇文章
< 1 2 250 >
每页显示 20 50 100
Defects and morphology engineering for constructing V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S nanotube heterojunction arrays toward efficient bifunctional electrocatalyst for overall water splitting
1
作者 Wenyuan Sun Alan Meng +4 位作者 Lei Wang Guicun Li Jinfeng Cui Yongkai Sun Zhenjiang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期29-40,共12页
The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube he... The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube heterojunction arrays were in-situ grown on copper foam(V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF)for efficient electrocatalytic overall water splitting.With the merits of nanotube arrays and efficient electronic mod-ulation drived by the OD vacancy defect and 2D heterojunction defect,the resultant V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF electrocatalyst exhibits excellent electrocatalytic activity with a low overpotential of 47 mV for the hydrogen evolution reaction(HER)at 10 mA cm^(-2) current density,and 263 mV for the oxygen evolution reaction(OER)at 50 mA cm^(-2) current density,as well as a cell voltage of 1.48 V at 10 mA cm^(-2).Moreover,the nanotube heterojunction arrays endows V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF with outstanding stability in long-term catalytic processes,as confirmed by the continuous chronopotentiom-etry tests at current densities of 10 mA cm^(-2) for 100 h. 展开更多
关键词 Nanotubearrays HETEROJUNCTION VACANCY Bifunctional electrocatalyst overall water splitting
下载PDF
Self-derivation and reconstruction of silver nanoparticle reinforced cobalt-nickel bimetallic hydroxides through interface engineering for overall water splitting
2
作者 Yan Li Jie Han +5 位作者 Weiwei Bao Junjun Zhang Taotao Ai Mameng Yang Chunming Yang Pengfei Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期590-599,I0013,共11页
Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen e... Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen evolution reaction(OER),have significant research potential because hydroxide reconstruction to generate an active phase is a remarkable advantage.Herein,the complete reconstruction of ultrathin CoNi(OH)_(2) nanosheets was achieved by embedding Ag nanoparticles into the hydroxide to induce a spontaneous redox reaction(SRR),forming heterojunction Ag@CoNi(OH)_(2) for bifunctional hydrolysis.Theoretical calculations and in situ Raman and ex situ characterizations revealed that the inductive effect of the Ag cation redistributed the charge to promote phase transformation to highly activate Ag-modified hydroxides.The Co-Ni dual sites in Co/NiOOH serve as novel active sites for optimizing the intermediates,thereby weakening the barrier formed by OOH^*.Ag@CoNi(OH)_(2) required a potential of 1.55 V to drive water splitting at a current density of 10 mA cm^(-2),with nearly 98.6% Faraday efficiency.Through ion induction and triggering of electron regulation in the OER via the synergistic action of the heterogeneous interface and surface reconstruction,this strategic design can overcome the limited capacity of bimetallic hydroxides and bridge the gap between the basic theory and industrialization of water decomposition. 展开更多
关键词 Surface reconstruction Bimetallic hydroxides Ag nanoparticle Operando Raman overall water splitting
下载PDF
Reconcile the contradictory wettability requirements for the reduction and oxidation half-reactions in overall CO_(2) photoreduction via alternately hydrophobic surfaces
3
作者 Hailing Huo Ting Hu +9 位作者 Chengxi Huang Fang Wu Tongyu Wang Xuan Liu Liang Zhang Qiang Ju Zhiqing Zhong Hongbin Xing Erjun Kan Ang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期202-212,I0006,共12页
The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR inv... The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR involves two half-reactions:the CO_(2) reduction half-reaction(CRHR)and the water oxidation half-reaction(WOHR).Generally,both half-reactions can be promoted by adjusting the wettability of catalysts.However,there is a contradiction in wettability requirements for the two half-reactions.Specifically,CRHR prefers a hydrophobic surface that can accumulate more CO_(2) molecules on the active sites,ensuring the appropriate ratio of gas-phase(CO_(2))to liquid-phase(H_(2)O)reactants.Conversely,the WOHR prefers a hydrophilic surface that can promote the departure of the gaseous product(O_(2))from the catalyst surface,preventing isolation between active sites and the reactant(H_(2)O).Here,we successfully reconciled the contradictory wettability requirements for the CRHR and WOHR by creating an alternately hydrophobic catalyst.This was achieved through a selectively hydrophobic modification method and a charge-transfer-control strategy.Consequently,the collaboratively promoted CRHR and WOHR led to a significantly enhanced OPCRR with a solar-to-fuel conversion efficiency of 0.186%.Notably,in ethanol production,the catalyst exhibited a 10.64-fold increase in generation rate(271.44μmol g^(-1)h~(-1))and a 4-fold increase in selectivity(55.77%)compared to the benchmark catalyst.This innovative approach holds great potential for application in universal overall reactions involving gas participation. 展开更多
关键词 HYDROPHOBIC HYDROPHILIC Gas transport overall CO_(2)photoreduction Z-scheme
下载PDF
Asymmetric configuration activating lattice oxygen via weakening d-p orbital hybridization for efficient C/N separation in urea overall electrolysis
4
作者 Chongchong Liu Peifang Wang +3 位作者 Bin Hu Xiaoli Liu Rong Huang Gang Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期233-239,共7页
Urea oxidation reaction(UOR)is proposed as an exemplary half-reaction in renewable energy applications because of its low thermodynamical potential.However,challenges persist due to sluggish reaction kinetics and comp... Urea oxidation reaction(UOR)is proposed as an exemplary half-reaction in renewable energy applications because of its low thermodynamical potential.However,challenges persist due to sluggish reaction kinetics and complex by-products separation.To this end,we introduce the lattice oxygen oxidation mechanism(LOM),propelling a novel UOR route using a modified CoFe layered double hydroxide(LDH)catalyst termed CFRO-7.Theoretical calculations and in-situ characterizations highlight the activated lattice oxygen(O_(L))within CFRO-7 as pivotal sites for UOR,optimizing the reaction pathway and accelerating the kinetics.For the urea overall electrolysis application,the LOM route only requires a low voltage of 1.54 V to offer a high current of 100 mA cm^(-2) for long-term utilization(>48 h).Importantly,the by-product NCO^(-)−is significantly suppressed,while the CO_(2)2/N_(2) separation is efficiently achieved.This work proposed a pioneering paradigm,invoking the LOM pathway in urea electrolysis to expedite reaction dynamics and enhance product selectivity. 展开更多
关键词 Lattice oxygen Urea oxidation reaction overall electrolysis Products selectivity
下载PDF
High-throughput calculation-based rational design of Fe-doped MoS_(2) nanosheets for electrocatalytic p H-universal overall water splitting
5
作者 Guangtong Hai Xiangdong Xue +3 位作者 Zhenyu Wu Canyang Zhang Xin Liu Xiubing Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期194-202,共9页
Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheet... Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheets(SFe-DMNs)were prepared based on the high-throughput density functional theory(DFT)calculation screening.Due to the synergistic effect between Fe atom and MoS_(2)and optimized intermediate binding energy,the SFe-DMNs could deliver outstanding activity for both HER and OER.When assembled into a two-electrode electrolytic cell,the SFe-DMNs could achieve the current density of 50 mA cm^(-2)at a low cell voltage of 1.55 V under neutral condition.These results not only confirmed the effectiveness of high-throughput screening,but also revealed the excellent activity and thus the potential applications in fuel cells of SFe-DMNs. 展开更多
关键词 High-throughput calculation overall water splitting Single atom doped catalyst Molybdenum disulfide nanosheet
下载PDF
Co_(3)S_(4)-pyrolysis lotus fiber flexible textile as a hybrid electrocatalyst for overall water splitting
6
作者 Qiulan Zhou Zhen Liu +5 位作者 Xuxu Wang Yaqian Li Xin Qin Lijuan Guo Liwei Zhou Weijian Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期336-344,I0008,共10页
Electrocatalytic overall water splitting(OWS),a pivotal approach in addressing the global energy crisis,aims to produce hydrogen and oxygen.However,most of the catalysts in powder form are adhesively bounding to the e... Electrocatalytic overall water splitting(OWS),a pivotal approach in addressing the global energy crisis,aims to produce hydrogen and oxygen.However,most of the catalysts in powder form are adhesively bounding to the electrodes,resulting in catalyst detachment by bubble generation and other uncertain interference,and eventually reducing the OWS performance.To surmount this challenge,we synthesized a hybrid material of Co_(3)S_(4)-pyrolysis lotus fiber(labeled as Co_(3)S_(4)-p LF)textile by hydrothermal and hightemperature pyrolysis processes for electrocatalytic OWS.Owing to the natural LF textile exposing the uniformly distributed functional groups(AOH,ANH_(2),etc.)to anchor Co_(3)S_(4)nanoparticles with hierarchical porous structure and outstanding hydrophily,the hybrid Co_(3)S_(4)-p LF catalyst shows low overpotentials at 10 m A cm^(-2)(η_(10,HER)=100 m Vη_(10,OER)=240 mV)alongside prolonged operational stability during electrocatalytic reactions.Theoretical calculations reveal that the electron transfer from p LF to Co_(3)S_(4)in the hybrid Co_(3)S_(4)-p LF is beneficial to the electrocatalytic process.This work will shed light on the development of nature-inspired carbon-based materials in hybrid electrocatalysts for OWS. 展开更多
关键词 overall water splitting Hybrid electrocatalyst TEXTILE Lotus fiber Co_(3)S_(4)nanoparticles
下载PDF
Risk stratification in gastric cancer lung metastasis: Utilizing an overall survival nomogram and comparing it with previous staging
7
作者 Zhi-Ren Chen Mei-Fang Yang +4 位作者 Zhi-Yuan Xie Pei-An Wang Liang Zhang Ze-Hua Huang Yao Luo 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第2期357-381,共25页
BACKGROUND Gastric cancer(GC)is prevalent and aggressive,especially when patients have distant lung metastases,which often places patients into advanced stages.By identifying prognostic variables for lung metastasis i... BACKGROUND Gastric cancer(GC)is prevalent and aggressive,especially when patients have distant lung metastases,which often places patients into advanced stages.By identifying prognostic variables for lung metastasis in GC patients,it may be po-ssible to construct a good prediction model for both overall survival(OS)and the cumulative incidence prediction(CIP)plot of the tumour.AIM To investigate the predictors of GC with lung metastasis(GCLM)to produce nomograms for OS and generate CIP by using cancer-specific survival(CSS)data.METHODS Data from January 2000 to December 2020 involving 1652 patients with GCLM were obtained from the Surveillance,epidemiology,and end results program database.The major observational endpoint was OS;hence,patients were se-parated into training and validation groups.Correlation analysis determined va-rious connections.Univariate and multivariate Cox analyses validated the independent predictive factors.Nomogram distinction and calibration were performed with the time-dependent area under the curve(AUC)and calibration curves.To evaluate the accuracy and clinical usefulness of the nomograms,decision curve analysis(DCA)was performed.The clinical utility of the novel prognostic model was compared to that of the 7th edition of the American Joint Committee on Cancer(AJCC)staging system by utilizing Net Reclassification Improvement(NRI)and Integrated Discrimination Improvement(IDI).Finally,the OS prognostic model and Cox-AJCC risk stratification model modified for the AJCC system were compared.RESULTS For the purpose of creating the OS nomogram,a CIP plot based on CSS was generated.Cox multivariate regression analysis identified eleven significant prognostic factors(P<0.05)related to liver metastasis,bone metastasis,primary site,surgery,regional surgery,treatment sequence,chemotherapy,radiotherapy,positive lymph node count,N staging,and time from diagnosis to treatment.It was clear from the DCA(net benefit>0),time-de-pendent ROC curve(training/validation set AUC>0.7),and calibration curve(reliability slope closer to 45 degrees)results that the OS nomogram demonstrated a high level of predictive efficiency.The OS prediction model(New Model AUC=0.83)also performed much better than the old Cox-AJCC model(AUC difference between the new model and the old model greater than 0)in terms of risk stratification(P<0.0001)and verification using the IDI and NRI.CONCLUSION The OS nomogram for GCLM successfully predicts 1-and 3-year OS.Moreover,this approach can help to ap-propriately classify patients into high-risk and low-risk groups,thereby guiding treatment. 展开更多
关键词 Gastric cancer Lung metastasis NOMOGRAMS SURVEILLANCE EPIDEMIOLOGY Surveillance epidemiology and end results program database overall survival Prognosis
下载PDF
Headwear design:Relationship between the headwear and the overall styling
8
作者 Li Shan 《China Textile》 2024年第3期59-61,共3页
This article examines the relationship between headwear design and overall clothing styling,emphasizing the importance of headwear in conveying personal style and cultural identity.It traces the evolution of Chinese a... This article examines the relationship between headwear design and overall clothing styling,emphasizing the importance of headwear in conveying personal style and cultural identity.It traces the evolution of Chinese and Western headwear throughout history,highlighting the interplay between headwear and the wearer's personal charac-teristics,life events,and cultural background.The article concludes by emphasizing that headwear design is not only a reflection of fashion,but also a manifestation of cultural depth and individuality. 展开更多
关键词 Headwear design headwear design and overall styling cultural expression
下载PDF
Duplex Interpenetrating-Phase FeNiZn and FeNi_(3)Heterostructure with Low-Gibbs Free Energy Interface Coupling for Highly Efficient Overall Water Splitting 被引量:5
9
作者 Qiuxia Zhou Caixia Xu +4 位作者 Jiagang Hou Wenqing Ma Tianzhen Jian Shishen Yan Hong Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期72-89,共18页
The sluggish kinetics of both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)generate the large overpotential in water electrolysis and thus high-cost hydrogen production.Here,multidimensional nanop... The sluggish kinetics of both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)generate the large overpotential in water electrolysis and thus high-cost hydrogen production.Here,multidimensional nanoporous interpenetrating-phase FeNiZn alloy and FeNi_(3)intermetallic heterostructure is in situ constructed on NiFe foam(FeNiZn/FeNi_(3)@NiFe)by dealloying protocol.Coupling with the eminent synergism among specific constituents and the highly efficient mass transport from integrated porous backbone,FeNiZn/FeNi_(3)@NiFe depicts exceptional bifunctional activities for water splitting with extremely low overpotentials toward OER and HER(η_(1000)=367/245 mV)as well as the robust durability during the 400 h testing in alkaline solution.The as-built water electrolyzer with FeNiZn/FeNi_(3)@NiFe as both anode and cathode exhibits record-high performances for sustainable hydrogen output in terms of much lower cell voltage of 1.759 and 1.919 V to deliver the current density of 500 and 1000 mA cm^(-2)as well long working lives.Density functional theory calculations disclose that the interface interaction between FeNiZn alloy and FeNi_(3)intermetallic generates the modulated electron structure state and optimized intermediate chemisorption,thus diminishing the energy barriers for hydrogen production in water splitting.With the merits of fine performances,scalable fabrication,and low cost,FeNiZn/FeNi_(3)@NiFe holds prospective application potential as the bifunctional electrocatalyst for water splitting. 展开更多
关键词 HETEROSTRUCTURE Interface effect DEALLOYING Bifunctional electrocatalyst overall water splitting
下载PDF
Recent Advances of Transition Metal Basic Salts for Electrocatalytic Oxygen Evolution Reaction and Overall Water Electrolysis 被引量:7
10
作者 Bingrong Guo Yani Ding +4 位作者 Haohao Huo Xinxin Wen Xiaoqian Ren Ping Xu Siwei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期238-260,共23页
Electrocatalytic oxygen evolution reaction(OER)has been recognized as the bottleneck of overall water splitting,which is a promising approach for sustainable production of H_(2).Transition metal(TM)hydroxides are the ... Electrocatalytic oxygen evolution reaction(OER)has been recognized as the bottleneck of overall water splitting,which is a promising approach for sustainable production of H_(2).Transition metal(TM)hydroxides are the most conventional and classical non-noble metal-based electrocatalysts for OER,while TM basic salts[M^(2+)(OH)_(2-x)(A_(m^(-))_(x/m),A=CO_(3)^(2−),NO_(3)^(−),F^(−),Cl^(−)]consisting of OH−and another anion have drawn extensive research interest due to its higher catalytic activity in the past decade.In this review,we summarize the recent advances of TM basic salts and their application in OER and further overall water splitting.We categorize TM basic salt-based OER pre-catalysts into four types(CO_(3)^(2−),NO_(3)^(−),F^(−),Cl^(−)according to the anion,which is a key factor for their outstanding performance towards OER.We highlight experimental and theoretical methods for understanding the structure evolution during OER and the effect of anion on catalytic performance.To develop bifunctional TM basic salts as catalyst for the practical electrolysis application,we also review the present strategies for enhancing its hydrogen evolution reaction activity and thereby improving its overall water splitting performance.Finally,we conclude this review with a summary and perspective about the remaining challenges and future opportunities of TM basic salts as catalysts for water electrolysis. 展开更多
关键词 Transition metal basic salts ELECTROCATALYTIC Oxygen evolution reaction(OER) overall water electrolysis
下载PDF
Optimizing band structure of CoP nanoparticles via rich-defect carbon shell toward bifunctional electrocatalysts for overall water splitting 被引量:3
11
作者 Juncheng Wu Zhe‐Fan Wang +7 位作者 Taotao Guan Guoli Zhang Juan Zhang Jie Han Shengqin Guan Ning Wang Jianlong Wang Kaixi Li 《Carbon Energy》 SCIE CSCD 2023年第3期112-125,共14页
Transition-metal phosphides(TMPs)with high catalytic activity are widely used in the design of electrodes for water splitting.However,a major challenge is how to achieve the trade-off between activity and stability of... Transition-metal phosphides(TMPs)with high catalytic activity are widely used in the design of electrodes for water splitting.However,a major challenge is how to achieve the trade-off between activity and stability of TMPs.Herein,a novel method for synthesizing CoP nanoparticles encapsu-lated in a rich-defect carbon shell(CoP/DCS)is developed through the self-assembly of modified polycyclic aromatic molecules.The graft and removal of high-activity C-N bonds of aromatic molecules render the controllable design of crystallite defects of carbon shell.The density functional theory calculation indicates that the carbon defects with unpaired electrons could effectively tailor the band structure of CoP.Benefiting from the improved activity and corrosion resistance,the CoP/DCS delivers outstanding difunctional hydrogen evolution reaction(88 mV)and oxygen evolution reaction(251 mV)performances at 10 mA cm^(−2)current density.Furthermore,the coupled water electrolyzer with CoP/DCS as both the cathode and anode presents ultralow cell voltages of 1.49 V to achieve 10 mA cm^(−2)with long-time stability.This strategy to improve TMPs electrocatalyst with rich-DCS and heterogeneous structure will inspire the design of other transition metal compound electrocatalysts for water splitting. 展开更多
关键词 band structure bifunctional electrocatalysts CoP nanoparticles overall water splitting rich‐defect carbon
下载PDF
Constructing P-CoMoO_(4)@NiCoP heterostructure nanoarrays on Ni foam as efficient bifunctional electrocatalysts for overall water splitting 被引量:2
12
作者 Ning You Shuai Cao +6 位作者 Mengqiu Huang Xiaoming Fan Kun Shi Haijian Huang Zhangxian Chen Zeheng Yang Weixin Zhang 《Nano Materials Science》 EI CAS CSCD 2023年第3期278-286,共9页
Improving catalytic activity and durabilty through the structural and compositional development of bifunctional electrocatalysts with low cost,high activity and stability is a challenging issue in electrochemical wate... Improving catalytic activity and durabilty through the structural and compositional development of bifunctional electrocatalysts with low cost,high activity and stability is a challenging issue in electrochemical water splitting.Herein,we report the fabrication of heterostructured P-CoMoO_(4)@NiCoP on a Ni foam substrate through interface engineering,by adjusting its composition and architecture.Benefitting from the tailored electronic structure and exposed active sites,the heterostructured P-CoMoO_(4)@NiCoP/NF arrays can be coordinated to boost the overall water splitting.In addition,the superhydrophilic and superaerophobic properties of P-CoMoO_(4)@NiCoP/NF make it conducive to water dissociation and bubble separation in the electrocatalytic process.The heterostructured PCoMoO_(4)@NiCoP/NF exhibits excellent bifunctional electrocatalysis activity with a low overpotential of 66 mV at 10 mA cm^(-2) for HER and 252 mV at 100 mA cm^(-2) for OER.Only 1.62 V potential is required to deliver 20 mA cm^(-2) in a two-electrode electrolysis system,providing a decent overall water splitting performance.The rational construction of the heterostructure makes it possible to regulate the electronic structures and active sites of the electrocatalysts to promote their catalytic activity. 展开更多
关键词 HETEROSTRUCTURE P-CoMoO_(4)@NiCoP Bifunctional electrocatalysts overall water splitting
下载PDF
Vacancies and interfaces engineering of core-shell heterostuctured NiCoP/NiO as trifunctional electrocatalysts for overall water splitting and zinc-air batteries 被引量:1
13
作者 Xiaolin Hu Jichuan Fan +4 位作者 Ronghua Wang Meng Li Shikuan Sun Chaohe Xu Fusheng Pan 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期601-611,共11页
The electronic structures and properties of electrocatalysts,which depend on the physicochemical structure and metallic element components,could significantly affect their electrocatalytic performance and their future... The electronic structures and properties of electrocatalysts,which depend on the physicochemical structure and metallic element components,could significantly affect their electrocatalytic performance and their future applications in Zn-air battery(ZAB)and overall water splitting(OWS).Here,by combining vacancies and heterogeneous interfacial engineering,three-dimensional(3D)core-shell NiCoP/NiO heterostructures with dominated oxygen vacancies have been controllably in-situ grown on carbon cloth for using as highly efficient electrocatalysts toward hydrogen and oxygen electrochemical reactions.Theoretical calculation and electrochemical results manifest that the hybridization of NiCoP core with NiO shell produces a strong synergistic electronic coupling effect.The oxygen vacancy can enable the emergence of new electronic states within the band gap,crossing the Fermi levels of the two spin components and optimizing the local electronic structure.Besides,the hierarchical core-shell NiCoP/NiO nanoarrays also endow the catalysts with multiple exposed active sites,faster mass transfer behavior,optimized electronic strutures and improved electrochemical performance during ZAB and OWS applications. 展开更多
关键词 DFT calculations Interface catalysis HETEROSTRUCTURES overall water splitting Zn–air batteries
下载PDF
Nomogram based on clinical characteristics for predicting overall survival in gastric cancer patients with preoperative anemia 被引量:1
14
作者 Yan Long Xiao-Lu Zhou +2 位作者 Cheng-Long Zhang Ya-Nan Wang Wen-Sheng Pan 《World Journal of Gastrointestinal Surgery》 SCIE 2023年第7期1375-1387,共13页
BACKGROUND Preoperative anemia is associated with increased postoperative morbidity and mortality and increased perioperative transfusion risk.For surgical patients,this affects physical and cognitive ability and qual... BACKGROUND Preoperative anemia is associated with increased postoperative morbidity and mortality and increased perioperative transfusion risk.For surgical patients,this affects physical and cognitive ability and quality of life,but it is an important and modifiable risk factor.AIM To determine the effect of preoperative anemia on the prognosis of gastric cancer(GC)patients and generate a prognostic nomogram to predict the postoperative overall survival(OS)of GC patients with preoperative anemia.METHODS Clinicopathological and follow-up data of GC patients treated at Zhejiang Provincial People's Hospital(China)from 2010 to 2015 were collected.Independent prognostic factors were screened by univariate and multivariate Cox regression analyses.Then,these factors were used to construct a nomogram to predict 1-,3-,and 5-year postoperative OS in preoperative anemic GC patients.The nomogram was assessed by calibration curves,receiver operating characteristic(ROC)curves,and decision curve analysis(DCA).RESULTS Nine hundred and sixty GC patients were divided into two groups(preoper atively anemic and nonanemic),and postoperative survival analysis was performed on both groups,yielding a shorter postoperative survival for preoperatively anemic patients than for nonanemic patients.A total of 347 GC patients with preoperative anemia were included.Age,preoperative alpha-fetoprotein level,monocyte count,lymphocyte count,clinicopathological stage,liver metastasis,and GC type were identified as independent prognostic factors for OS.The area under the ROC curve(AUC)of the nomogram for predicting 1-,3-,and 5-year OS was 0.831,0.845,and 0.840,respectively,for the training cohort,and the corresponding AUC values in the validation cohort were 0.827,0.829,and 0.812,respectively.Calibration curves and DCA indicated good performance of the nomogram.CONCLUSION In all,we have successfully produced and verified a useful nomogram for predicting OS in GC patients with preoperative anemia.This nomogram based on a variety of clinicopathological indices can provide an effective prognostic assessment and help clinicians choose an appropriate treatment strategy for GC patients with preoperative anemia. 展开更多
关键词 ANEMIA Gastric cancer NOMOGRAM overall survival
下载PDF
Dynamically-evolved surface heterojunction in iridium nanocrystals boosting acidic oxygen evolution and overall water splitting 被引量:1
15
作者 Chenyu Yang Xiuxiu Zhang +6 位作者 Qizheng An Meihuan Liu Wanlin Zhou Yuanli Li Fengchun Hu Qinghua Liu Hui Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期374-380,I0011,共8页
Simultaneously realizing improved activity and stability of acidic oxygen evolution reaction(OER) electrocatalysts is highly promising for developing cost-effective sustainable energy in the splitting of water techniq... Simultaneously realizing improved activity and stability of acidic oxygen evolution reaction(OER) electrocatalysts is highly promising for developing cost-effective sustainable energy in the splitting of water technique.Herein,we report iridium nanocrystals embedded into 3D conductive clothes(Ir-NCT/CC) as a low iridium electrocatalyst realizing ultrahigh acidic OER activity and robust stability.The well-designed Ir-NCT/CC requires a low overpotential of 202 mV to reach the current density of 10 mA cm^(-2)with a high mass activity of 1754 A g^(-1).Importantly,in acidic overall water splitting,Ir-NCT/CC merely delivers a cell voltage of 1.469 V at a typical current density of 10 mA cm^(-2)and also maintains robust durability under continuous operation.We identify that a low working voltage drives the formation of a highly stable amorphous IrOxactive phase over the surface of Ir nanocrystals(surface heterojunction IrOx/Ir-NCT) during operating conditions,which contributes to an effective and durable OER process. 展开更多
关键词 ELECTROCATALYST Surface heterojunction In-situ synchrotron radiation techniques Reaction kinetics Acidic overall water splitting
下载PDF
Fibrinogen-to-albumin ratio predicts overall survival of hepatocellular carcinoma 被引量:1
16
作者 Hao Sun Jie Ma +6 位作者 Jian Lu Zhi-Hong Yao Hai-Liang Ran Hai Zhou Zhong-Qin Yuan Yun-Chao Huang Yuan-Yuan Xiao 《World Journal of Gastrointestinal Oncology》 SCIE 2023年第9期1662-1672,共11页
BACKGROUND Fibrinogen-to-albumin ratio(FAR)has been found to be of prognostic significance for several types of malignant tumors.However,less is known about the association between FAR and survival outcomes in hepatoc... BACKGROUND Fibrinogen-to-albumin ratio(FAR)has been found to be of prognostic significance for several types of malignant tumors.However,less is known about the association between FAR and survival outcomes in hepatocellular carcinoma(HCC)patients.AIM To explore the association between FAR and prognosis and survival in patients with HCC.METHODS A total of 366 histologically confirmed HCC patients diagnosed between 2013 and 2018 in a provincial cancer hospital in southwestern China were retrospectively selected.Relevant data were extracted from the hospital information system.The optimal cutoff for baseline serum FAR measured upon disease diagnosis was established using the receiver operating characteristic(ROC)curve.Univariate and multivariate Cox proportional hazards models were used to determine the crude and adjusted associations between FAR and the overall survival(OS)of the HCC patients while controlling for various covariates.The restricted cubic spline(RCS)was applied to estimate the dose-response trend in the FAR-OS association.RESULTS The optimal cutoff value for baseline FAR determined by the ROC was 0.081.Multivariate Cox proportional hazards model revealed that a lower baseline serum FAR level was associated with an adjusted hazard ratio of 2.43(95%confidence interval:1.87–3.15)in the OS of HCC patients,with identifiable dose-response trend in the RCS.Subgroup analysis showed that this FAR-OS association was more prominent in HCC patients with a lower baseline serum aspartate aminotransferase or carbohydrate antigen 125 level.CONCLUSION Serum FAR is a prominent prognostic indicator for HCC.Intervention measures aimed at reducing FAR might result in survival benefit for HCC patients. 展开更多
关键词 Fibrinogen-to-albumin ratio Hepatocellular carcinoma overall survival Survival analysis Cox proportional hazards model
下载PDF
Overall plan and design of the task management system of ternary optical computer 被引量:3
17
作者 宋凯 金翊 《Journal of Shanghai University(English Edition)》 CAS 2011年第5期467-472,共6页
t In this paper an overall scheme of the task management system of ternary optical computer (TOC) is proposed, and the software architecture chart is given. The function and accomplishment of each module in the syst... t In this paper an overall scheme of the task management system of ternary optical computer (TOC) is proposed, and the software architecture chart is given. The function and accomplishment of each module in the system are described in general. In addition, according to the aforementioned scheme a prototype of TOC task management system is implemented, and the feasibility, rationality and completeness of the scheme are verified via running and testing the prototype. 展开更多
关键词 ternary optical computer (TOC) task management system overall plan task scheduling processor resource allocation
下载PDF
Digital Problems and Strategies of Partial Revision in Overall Plan of Land Use 被引量:3
18
作者 ZHENG Cai-gui,ZHANG Xiao-cheng,LI Ji-zhuang,LIANG Qi-xue Chongqing Institute of Surveying and Planning for Land,Chongqing 400020,China 《Asian Agricultural Research》 2010年第3期62-64,共3页
The technical route of partial revision in overall plan of land use is briefly described.It is pointed out that problems of area measuring in the technical route are mainly due to the digital process.The digital probl... The technical route of partial revision in overall plan of land use is briefly described.It is pointed out that problems of area measuring in the technical route are mainly due to the digital process.The digital problems of partial revision in overall plan of land use are presented as follows:the maps are not proofread before digitalization;the coordinate matching and projection transformation are not conducted on the maps;the information is asymmetrical pre and post the digitalization;the location lacks precision;the result maps are substandard.The causes of these problems are analyzed,which cover the following aspects.The lack of united management regulations;uneven working abilities of the staff in the compilation units;unawareness of the importance of map digilalization;poor basic conclitions of the original plan maps.At last,the relevant suggestions are put forward,for instance,releasing the national united management methods and technical criteria,establishing industrial admittance system and qualification system of complication units,setting up the mechanism of supervising digitalized results and controlling the quality,conducting coordinate matching and projection transformation and unifying the specification and mode of the results of maps so as to provide technical support for the overall plan of land use,play the micro-regulating role of land use and take a leading role in the sustainable development of social economy. 展开更多
关键词 overall plan of LAND use TECHNICAL specification D
下载PDF
Study on Overall Concept Planning of Terminal Correction Mortar Projectiles 被引量:1
19
作者 徐劲祥 《Journal of Beijing Institute of Technology》 EI CAS 2008年第2期127-132,共6页
The system composition, the operational principle of terminal correction mortar projectiles (TCMP) and the concept planning design of TCMP are researched in this paper. An overall design and aerodynamic configuratio... The system composition, the operational principle of terminal correction mortar projectiles (TCMP) and the concept planning design of TCMP are researched in this paper. An overall design and aerodynamic configuration layout for TCMP are made in this paper, and its aerodynamic coefficients are calculated by using computational fluid dynamics (CFD) software. Test results of TCMP simulated ballistic projectiles indicate the designed TCMP can satisfy the interior ballistic demand and has a fine flight stability. The drag coefficients identified from the radar velocity-time data are in accord with the CFD computed results. According to the exposure frequency of the ground laser designator, a four-quadrant impulse correction scheme and a high exposure frequency impulse correction scheme are brought. The latter can calculate the target azimuth angle by counting the times of the facula passing through one quadrant. Simulation results also show that the guidance precision of the velocity pursuit is higher than that of the body pursuit, and the detector axis is less circuitous. Researches on the typical trajectory indicate that the terminal impulse correction can improve the hit precision of TCMP remarkably. 展开更多
关键词 terminal correction mortar projectile overall concept planning trajectory simulation pursuit guidance law
下载PDF
The Application of Scenario Analysis in the Overall Planning of Land Use:A Case Study of Shangluo City in Shaanxi Province 被引量:1
20
作者 SUN Pi-ling YANG Hai-juan 《Asian Agricultural Research》 2012年第10期28-33,共6页
The overall planning of land use is a complex process of joint action of social system, natural and economic conditions. On the basis of summarizing the existing researches, we select Shaanxi's Shangluo City, loca... The overall planning of land use is a complex process of joint action of social system, natural and economic conditions. On the basis of summarizing the existing researches, we select Shaanxi's Shangluo City, located in the Qinba mountainous area as the study object, to expound the concept and steps of scenario analysis based on land use change data, under the guidance of ecological safety and sustainable development theory. We design four different scenarios of land use planning program in Shangluo City during the period 2006-2020, and use grey linear programming model to analyze each scenario. The results show that the scenario analysis is feasible in the adjustment of land use structure in Shangluo City; operable in the determining of land use planning program on a macro-municipal scale. 展开更多
关键词 overall planNING of LAND use GREY linear programmi
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部