Combining the system of rapid collection of ambient particles and ion chromatography, the system of rapid collection of fine particles and ion chromatography (RCFP-IC) was established to automatically analyze on-lin...Combining the system of rapid collection of ambient particles and ion chromatography, the system of rapid collection of fine particles and ion chromatography (RCFP-IC) was established to automatically analyze on-line the concentrations of water-soluble ions in ambient particles. Here, the general scheme of RCFP-IC is described and its basic performance is tested. The detection limit of RCFP-IC for SO4^2-, NO3^-, NO2^-, Cl^- and F- is below 0.3μg m^-3. The collection efficiency of RCFP-IC increases rapidly with increasing sized particles. For particles larger than 300 nm, the collection efficiency approaches 100%. The precision of RCFP-IC is more than 90% over 28 repetitions. The response of RCFP-IC is very sensitive and no obvious cross-pollution is found during measurement. A comparison of RCFP-IC with an integrated filter measurement indicates that the measurement of RCFP-IC is comparable in both laboratory experiments and field observations. The results of the field experiment prove that RCFP-IC is an effective on-line monitoring system and is helpful in source apportionment and pollution episode monitoring.展开更多
基金This work was supported by the National Natural Science Foundation of China under Grant No. 40525016.
文摘Combining the system of rapid collection of ambient particles and ion chromatography, the system of rapid collection of fine particles and ion chromatography (RCFP-IC) was established to automatically analyze on-line the concentrations of water-soluble ions in ambient particles. Here, the general scheme of RCFP-IC is described and its basic performance is tested. The detection limit of RCFP-IC for SO4^2-, NO3^-, NO2^-, Cl^- and F- is below 0.3μg m^-3. The collection efficiency of RCFP-IC increases rapidly with increasing sized particles. For particles larger than 300 nm, the collection efficiency approaches 100%. The precision of RCFP-IC is more than 90% over 28 repetitions. The response of RCFP-IC is very sensitive and no obvious cross-pollution is found during measurement. A comparison of RCFP-IC with an integrated filter measurement indicates that the measurement of RCFP-IC is comparable in both laboratory experiments and field observations. The results of the field experiment prove that RCFP-IC is an effective on-line monitoring system and is helpful in source apportionment and pollution episode monitoring.