The adsorption equilibrium of a fluoride solution on 1-2 mm granular activated alumina modified by Fe2(SO4)3 solution was investigated.The experiments were conducted using a wide range of initial fluoride concentratio...The adsorption equilibrium of a fluoride solution on 1-2 mm granular activated alumina modified by Fe2(SO4)3 solution was investigated.The experiments were conducted using a wide range of initial fluoride concentrations(0.5 to 180 mg·L-1 at pH~7.0) and an adsorbent dose of 1.0 g·L-1.The application of Langmuir and Freundlich adsorption isotherm models(linear and nonlinear forms) generally showed that a single Langmuir or Freundlich equation cannot fit the entire concentration gap.Experimental data on low equilibrium concentrations(0.1 to 5.0 mg·L-1) was in line with both Langmuir and Freundlich isotherm models,whereas that of high equilibrium concentrations(5.0 to 150 mg·L-1) was more in line with the Freundlich isotherm model.A new LangmuirFreundlich function was used for the entire concentration gap,as well as for low and high concentrations.展开更多
As one of the most important ways to reduce the greenhouse gas emission,carbon dioxide(CO2)enhanced gas recovery(CO2-EGR) is attractive since the gas recovery can be enhanced simultaneously with CO2sequestration.B...As one of the most important ways to reduce the greenhouse gas emission,carbon dioxide(CO2)enhanced gas recovery(CO2-EGR) is attractive since the gas recovery can be enhanced simultaneously with CO2sequestration.Based on the existing equation of state(EOS) module of TOUGH2 MP,extEOS7C is developed to calculate the phase partition of H2O-CO2-CH4-NaCl mixtures accurately with consideration of dissolved NaCI and brine properties at high pressure and temperature conditions.Verifications show that it can be applied up to the pressure of 100 MPa and temperature of 150℃.The module was implemented in the linked simulator TOUGH2MP-FLAC3 D for the coupled hydro-mechanical simulations.A simplified three-dimensional(3D)1/4 model(2.2 km×1 km×1 km) which consists of the whole reservoir,caprock and baserock was generated based on the geological conditions of a gas field in the North German Basin.The simulation results show that,under an injection rate of 200,000 t/yr and production rate of 200,000 sm3/d,CO2breakthrough occurred in the case with the initial reservoir pressure of 5 MPa but did not occur in the case of 42 MPa.Under low pressure conditions,the pressure driven horizontal transport is the dominant process;while under high pressure conditions,the density driven vertical flow is dominant.Under the considered conditions,the CO2-EGR caused only small pressure changes.The largest pore pressure increase(2 MPa) and uplift(7 mm) occurred at the caprock bottom induced by only CO2injection.The caprock had still the primary stress state and its integrity was not affected.The formation water salinity and temperature variations of ±20℃ had small influences on the CO2-EGR process.In order to slow down the breakthrough,it is suggested that CO2-EGR should be carried out before the reservoir pressure drops below the critical pressure of CO2.展开更多
For describing various complex nonlinear phenomena in the realistic world,the higher-dimensional nonlinearevolution equations appear more attractive in many fields of physical and engineering sciences.In this paper,by...For describing various complex nonlinear phenomena in the realistic world,the higher-dimensional nonlinearevolution equations appear more attractive in many fields of physical and engineering sciences.In this paper,by virtueof the Hirota bilinear method and Riemann theta functions,the periodic wave solutions for the(2+1)-dimensionalBoussinesq equation and(3+1)-dimensional Kadomtsev-Petviashvili(KP)equation are obtained.Furthermore,it isshown that the known soliton solutions for the two equations can be reduced from the periodic wave solutions.展开更多
In this paper, we introduce the notion of a (2+1)-dimenslonal differential equation describing three-dimensional hyperbolic spaces (3-h.s.). The (2+1)-dimensional coupled nonlinear Schrodinger equation and its...In this paper, we introduce the notion of a (2+1)-dimenslonal differential equation describing three-dimensional hyperbolic spaces (3-h.s.). The (2+1)-dimensional coupled nonlinear Schrodinger equation and its sister equation, the (2+1)-dimensional coupled derivative nonlinear Schrodinger equation, are shown to describe 3-h.s, The (2 + 1 )-dimensional generalized HF model:St=(1/2i[S,Sy]+2iσS)x,σx=-1/4i tr(SSxSy), in which S ∈ GLc(2)/GLc(1)×GLc(1),provides another example of (2+1)-dimensional differential equations describing 3-h.s. As a direct con-sequence, the geometric construction of an infinire number of conservation lairs of such equations is illustrated. Furthermore we display a new infinite number of conservation lairs of the (2+1)-dimensional nonlinear Schrodinger equation and the (2+1)-dimensional derivative nonlinear Schrodinger equation by a geometric way.展开更多
Excellent fits to a couple of the data-sets on the temperature (T)-dependent upper critical field (Hc2) of H3S (critical temperature, Tc ≈ 200 K at pressure ≈ 150 GPa) reported by Mozaffari, et al. (2019) were obtai...Excellent fits to a couple of the data-sets on the temperature (T)-dependent upper critical field (Hc2) of H3S (critical temperature, Tc ≈ 200 K at pressure ≈ 150 GPa) reported by Mozaffari, et al. (2019) were obtained by Talantsev (2019) in an approach based on an ingenious mix of the Ginzberg-Landau (GL), the Werthamer, Helfand and Hohenberg (WHH), and the Gor’kov, etc., theories which have individually been employed for the same purpose for a long time. Up to the lowest temperature (TL) in each of these data-sets, similarly accurate fits have also been obtained by Malik and Varma (2023) in a radically different approach based on the Bethe-Salpeter equation (BSE) supplemented by the Matsubara and the Landau quantization prescriptions. For T TL, however, while the (GL, WHH, etc.)-based approach leads to Hc2(0) ≈ 100 T, the BSE-based approach leads to about twice this value even at 1 K. In this paper, a fit to one of the said data-sets is obtained for the first time via a thermodynamic approach which, up to TL, is as good as those obtained via the earlier approaches. While this is interesting per se, another significant result of this paper is that for T TL it corroborates the result of the BSE-based approach.展开更多
KF or K2CO3 was added into the 1-butanol-water system and two phases were formed: water-rich phase (water phase) and 1-butanol-rich phase (1-butanol phase). The liquid liquid equilibrium (LLE) data for 1-butano...KF or K2CO3 was added into the 1-butanol-water system and two phases were formed: water-rich phase (water phase) and 1-butanol-rich phase (1-butanol phase). The liquid liquid equilibrium (LLE) data for 1-butanol-water-KF and 1-butanol-water-K2CO3 systems were measured at 25℃ and showed that 1-butanol phase contained negligible salt and water phase contained negligible 1-butanol when the concentrations of KF and K2CO3 in the water phase were equal to or higher than 27.11% and 31.68% , respectively. Thus water could be separated efficiently from 1-butanol-water by adding KF or K2CO3 into the system. A theoretical calculation of LLE data was calculated by using the Pitzer theory to get water activity in the water phase, and by the models, such as the Wilson, NRTL or the UNIQUAC for the 1-butanol phase. For 1-hutanol-water-KF system, the experimental data were found in good agreement with the calculated results by using Pitzer theory and Wilson equa tion, while for 1-butanol-water-K2CO3 system, the experimental data were found in good agreement with the calculated results by using Pitzer theory and UNIQUAC eauation.展开更多
基金Supported by the Major National Science and Technology Special Project on Treatment and Control of Water Pollution(2009ZX07425-006)the State Key laboratory of Environmental Simulation and Pollution Control (09K04ESPCT)
文摘The adsorption equilibrium of a fluoride solution on 1-2 mm granular activated alumina modified by Fe2(SO4)3 solution was investigated.The experiments were conducted using a wide range of initial fluoride concentrations(0.5 to 180 mg·L-1 at pH~7.0) and an adsorbent dose of 1.0 g·L-1.The application of Langmuir and Freundlich adsorption isotherm models(linear and nonlinear forms) generally showed that a single Langmuir or Freundlich equation cannot fit the entire concentration gap.Experimental data on low equilibrium concentrations(0.1 to 5.0 mg·L-1) was in line with both Langmuir and Freundlich isotherm models,whereas that of high equilibrium concentrations(5.0 to 150 mg·L-1) was more in line with the Freundlich isotherm model.A new LangmuirFreundlich function was used for the entire concentration gap,as well as for low and high concentrations.
基金funded by the National Natural Science Foundation of China(Grant No.NSFC51374147)the German Society for Petroleum and Coal Science and Technology(Grant No.DGMK680-4)
文摘As one of the most important ways to reduce the greenhouse gas emission,carbon dioxide(CO2)enhanced gas recovery(CO2-EGR) is attractive since the gas recovery can be enhanced simultaneously with CO2sequestration.Based on the existing equation of state(EOS) module of TOUGH2 MP,extEOS7C is developed to calculate the phase partition of H2O-CO2-CH4-NaCl mixtures accurately with consideration of dissolved NaCI and brine properties at high pressure and temperature conditions.Verifications show that it can be applied up to the pressure of 100 MPa and temperature of 150℃.The module was implemented in the linked simulator TOUGH2MP-FLAC3 D for the coupled hydro-mechanical simulations.A simplified three-dimensional(3D)1/4 model(2.2 km×1 km×1 km) which consists of the whole reservoir,caprock and baserock was generated based on the geological conditions of a gas field in the North German Basin.The simulation results show that,under an injection rate of 200,000 t/yr and production rate of 200,000 sm3/d,CO2breakthrough occurred in the case with the initial reservoir pressure of 5 MPa but did not occur in the case of 42 MPa.Under low pressure conditions,the pressure driven horizontal transport is the dominant process;while under high pressure conditions,the density driven vertical flow is dominant.Under the considered conditions,the CO2-EGR caused only small pressure changes.The largest pore pressure increase(2 MPa) and uplift(7 mm) occurred at the caprock bottom induced by only CO2injection.The caprock had still the primary stress state and its integrity was not affected.The formation water salinity and temperature variations of ±20℃ had small influences on the CO2-EGR process.In order to slow down the breakthrough,it is suggested that CO2-EGR should be carried out before the reservoir pressure drops below the critical pressure of CO2.
基金supported by the National Natural Science Foundation of China under Grant Nos.60772023 and 60372095the Key Project of the Ministry of Education under Grant No.106033+3 种基金the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.SKLSDE-07-001Beijing University of Aeronautics and Astronauticsthe National Basic Research Program of China(973 Program)under Grant No.2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education of the Ministry of Education under Grant No.20060006024
文摘For describing various complex nonlinear phenomena in the realistic world,the higher-dimensional nonlinearevolution equations appear more attractive in many fields of physical and engineering sciences.In this paper,by virtueof the Hirota bilinear method and Riemann theta functions,the periodic wave solutions for the(2+1)-dimensionalBoussinesq equation and(3+1)-dimensional Kadomtsev-Petviashvili(KP)equation are obtained.Furthermore,it isshown that the known soliton solutions for the two equations can be reduced from the periodic wave solutions.
基金The project partially supported by National Natural Science Foundation of China
文摘In this paper, we introduce the notion of a (2+1)-dimenslonal differential equation describing three-dimensional hyperbolic spaces (3-h.s.). The (2+1)-dimensional coupled nonlinear Schrodinger equation and its sister equation, the (2+1)-dimensional coupled derivative nonlinear Schrodinger equation, are shown to describe 3-h.s, The (2 + 1 )-dimensional generalized HF model:St=(1/2i[S,Sy]+2iσS)x,σx=-1/4i tr(SSxSy), in which S ∈ GLc(2)/GLc(1)×GLc(1),provides another example of (2+1)-dimensional differential equations describing 3-h.s. As a direct con-sequence, the geometric construction of an infinire number of conservation lairs of such equations is illustrated. Furthermore we display a new infinite number of conservation lairs of the (2+1)-dimensional nonlinear Schrodinger equation and the (2+1)-dimensional derivative nonlinear Schrodinger equation by a geometric way.
文摘Excellent fits to a couple of the data-sets on the temperature (T)-dependent upper critical field (Hc2) of H3S (critical temperature, Tc ≈ 200 K at pressure ≈ 150 GPa) reported by Mozaffari, et al. (2019) were obtained by Talantsev (2019) in an approach based on an ingenious mix of the Ginzberg-Landau (GL), the Werthamer, Helfand and Hohenberg (WHH), and the Gor’kov, etc., theories which have individually been employed for the same purpose for a long time. Up to the lowest temperature (TL) in each of these data-sets, similarly accurate fits have also been obtained by Malik and Varma (2023) in a radically different approach based on the Bethe-Salpeter equation (BSE) supplemented by the Matsubara and the Landau quantization prescriptions. For T TL, however, while the (GL, WHH, etc.)-based approach leads to Hc2(0) ≈ 100 T, the BSE-based approach leads to about twice this value even at 1 K. In this paper, a fit to one of the said data-sets is obtained for the first time via a thermodynamic approach which, up to TL, is as good as those obtained via the earlier approaches. While this is interesting per se, another significant result of this paper is that for T TL it corroborates the result of the BSE-based approach.
文摘KF or K2CO3 was added into the 1-butanol-water system and two phases were formed: water-rich phase (water phase) and 1-butanol-rich phase (1-butanol phase). The liquid liquid equilibrium (LLE) data for 1-butanol-water-KF and 1-butanol-water-K2CO3 systems were measured at 25℃ and showed that 1-butanol phase contained negligible salt and water phase contained negligible 1-butanol when the concentrations of KF and K2CO3 in the water phase were equal to or higher than 27.11% and 31.68% , respectively. Thus water could be separated efficiently from 1-butanol-water by adding KF or K2CO3 into the system. A theoretical calculation of LLE data was calculated by using the Pitzer theory to get water activity in the water phase, and by the models, such as the Wilson, NRTL or the UNIQUAC for the 1-butanol phase. For 1-hutanol-water-KF system, the experimental data were found in good agreement with the calculated results by using Pitzer theory and Wilson equa tion, while for 1-butanol-water-K2CO3 system, the experimental data were found in good agreement with the calculated results by using Pitzer theory and UNIQUAC eauation.