期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
全矩阵空间上保持Ⅰ-幂等矩阵的线性映射
1
作者 张杨 郑宝东 《黑龙江大学自然科学学报》 CAS 北大核心 2011年第2期152-155,161,共5页
设F是特征不为2的任意域,Mn(F)表示F上所有n×n矩阵所组成的空间。对任意A∈Mn(F),若存在λ∈F和幂等阵M∈Mn(F)使得A=λI+M,则称A为Ⅰ-幂等矩阵。设φ:Mn(F)→Mn(F)为线性映射,若当A为Ⅰ-幂等矩阵时,φ(A)也为Ⅰ-幂等矩阵,则称φ... 设F是特征不为2的任意域,Mn(F)表示F上所有n×n矩阵所组成的空间。对任意A∈Mn(F),若存在λ∈F和幂等阵M∈Mn(F)使得A=λI+M,则称A为Ⅰ-幂等矩阵。设φ:Mn(F)→Mn(F)为线性映射,若当A为Ⅰ-幂等矩阵时,φ(A)也为Ⅰ-幂等矩阵,则称φ保持Ⅰ-幂等矩阵。刻画Mn(F)上保持Ⅰ-幂等矩阵的线性双射的形式,即若φ:Mn(F)→Mn(F)为保持Ⅰ-幂等矩阵的线性双射,则对任意A∈Mn(F),存在可逆阵P∈Mn(F)和线性泛函f:Mn(F)→F使得φ(A)=PAP-1+f(A)I或φ(A)=PAtP-1+f(A)I。 展开更多
关键词 矩阵 线性映射 幂等 ⅰ-幂等 保持
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部