本文以太湖为研究对象 ,应用逸度方法研究不同藻类生物量对 p,p′- DDT、六氯苯和六六六在太湖沉积相和水相中分布的影响。计算中选取多介质环境模型中的 L evel 模型 ,并把该模型中悬浮相中的藻类分离出来作为一个生物相。计算结果能...本文以太湖为研究对象 ,应用逸度方法研究不同藻类生物量对 p,p′- DDT、六氯苯和六六六在太湖沉积相和水相中分布的影响。计算中选取多介质环境模型中的 L evel 模型 ,并把该模型中悬浮相中的藻类分离出来作为一个生物相。计算结果能真实反映 POPs在太湖中的分布。藻类生物量的变化对太湖中 POPs在水相和沉积相的分布影响非常大。通过对计算结果的分析 ,得出除去太湖水团中的POPs的最佳时机是每次藻华后藻类大量死亡时。展开更多
In this work, the feasibility of using a macroporous strong acid ion exchange resin (D72) as an adsorbent for praseodymium (Ⅲ) was examined. The adsorption behavior and mechanism were investigated with various chemic...In this work, the feasibility of using a macroporous strong acid ion exchange resin (D72) as an adsorbent for praseodymium (Ⅲ) was examined. The adsorption behavior and mechanism were investigated with various chemical methods and IR spectrometry. The results showed that the loading of Pr (III) ions was strongly dependent on pH of the medium and the optimal adsorption condition is in HAc-NaAc medium with pH value of 3.0. Adsorption kinetics of Pr (III) ions onto D72 resin could be best described by pseudo-second-order model. The maximum adsorption capacity of D72 for Pr (Ⅲ) was evaluated to be 294 mg·g 1 for the Langmuir model at 298K. The apparent activation energy, E a , was 14.71 kJ·mol 1 . The calculated data of thermodynamic parameters, ΔSΘ value of 100 J·mol 1 ·K 1 and ΔHΘ value of 8.89 kJ·mol 1 , indicate the endothermic nature of the adsorption process, while a decrease of ΔGΘ with increasing temperature indicates the spontaneous nature of the adsorption process. Finally, Pr (Ⅲ) can be eluted by using 1.00 mol·L 1 HCl-0.50 mol·L 1 NaCl solution and the D72 resin can be regenerated and reused. Thomas model was successfully applied to experimental data to predict the breakthrough curves and to determine the characteristic parameters of the column useful for process design. The characterization before and after adsorption of Pr (Ⅲ) ions on D72 resin was conformed by IR.展开更多
基金Supported by the National Key Technologies Research and Development Program of China (2008BAD94B09)the Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Zhejiang Sci-Tech University)+1 种基金the Ministry of Education(2011007)the Zhejiang Provincial Scientific Research Project (Y201223624)
文摘In this work, the feasibility of using a macroporous strong acid ion exchange resin (D72) as an adsorbent for praseodymium (Ⅲ) was examined. The adsorption behavior and mechanism were investigated with various chemical methods and IR spectrometry. The results showed that the loading of Pr (III) ions was strongly dependent on pH of the medium and the optimal adsorption condition is in HAc-NaAc medium with pH value of 3.0. Adsorption kinetics of Pr (III) ions onto D72 resin could be best described by pseudo-second-order model. The maximum adsorption capacity of D72 for Pr (Ⅲ) was evaluated to be 294 mg·g 1 for the Langmuir model at 298K. The apparent activation energy, E a , was 14.71 kJ·mol 1 . The calculated data of thermodynamic parameters, ΔSΘ value of 100 J·mol 1 ·K 1 and ΔHΘ value of 8.89 kJ·mol 1 , indicate the endothermic nature of the adsorption process, while a decrease of ΔGΘ with increasing temperature indicates the spontaneous nature of the adsorption process. Finally, Pr (Ⅲ) can be eluted by using 1.00 mol·L 1 HCl-0.50 mol·L 1 NaCl solution and the D72 resin can be regenerated and reused. Thomas model was successfully applied to experimental data to predict the breakthrough curves and to determine the characteristic parameters of the column useful for process design. The characterization before and after adsorption of Pr (Ⅲ) ions on D72 resin was conformed by IR.