基于观测数据和作物模型相同化的田块尺度作物生长监测,对于农田精准管理具有重要意义。为构建能准确模拟旱区春小麦长势和产量的同化模拟模型,该研究利用SWAP(soil-water-atmosphere-plant)模型和迭代集合平滑器算法(iterative ensembl...基于观测数据和作物模型相同化的田块尺度作物生长监测,对于农田精准管理具有重要意义。为构建能准确模拟旱区春小麦长势和产量的同化模拟模型,该研究利用SWAP(soil-water-atmosphere-plant)模型和迭代集合平滑器算法(iterative ensemble smoother,IES),构建了适合旱区春小麦的SWAP-IES同化模拟系统,并利用2019—2020年田间观测试验数据,评估了同化叶面积指数(leaf area index,LAI)、土壤水分(soil water content,SW)及其组合在旱区春小麦生长模拟和估产中的作用。结果表明,相较于无同化情景,在吸收6次土壤水分观测数据后,模型对土壤水分模拟的R^(2)从0.48提升到0.87。同化LAI时,各水分胁迫处理下LAI的模拟精度均最高,R^(2)从无同化的0.35~0.62提升到0.76~0.96。同化LAI+SW时,各处理对生物量模拟的精度均最高,R^(2)从无同化的0.40~0.67提升到0.73~0.96。轻度水分胁迫处理(T4~T5)下,仅同化LAI即可达到较好的估产效果,相对误差为4.05%~9.17%,而在中度或重度水分胁迫处理(T1~T3)下,准确的产量估算需同时吸收LAI和SW,相对误差为3.87%~8.38%。开花期和拔节期的观测数据对提高SWAP-IES系统估产精度的作用最大,同时吸收开花期和拔节期LAI+SW观测数据时估产的R^(2)可从无同化的0.45提高到0.79。说明所构建的SWAP-IES同化模拟系统,在融入开花期和拔节期等关键生育期的观测数据后能有效模拟不同水分处理下春小麦生长和产量形成过程,可为田块尺度下旱区春小麦精准监测提供技术参考。展开更多
针对外卖配送电动自行车换电柜布局不合理带来的部分换电柜利用率低与部分换电需求得不到及时满足的供需矛盾问题,本文通过聚类POI(Point of Interest)数据确定外卖配送起止点,并通过仿真模拟外卖骑手配送路径预测外卖配送电动自行车换...针对外卖配送电动自行车换电柜布局不合理带来的部分换电柜利用率低与部分换电需求得不到及时满足的供需矛盾问题,本文通过聚类POI(Point of Interest)数据确定外卖配送起止点,并通过仿真模拟外卖骑手配送路径预测外卖配送电动自行车换电需求时空分布,构建换电柜运营商总成本最低和用户满意度最高的多目标换电柜选址定容模型,并以新乡市主城区为例,采用NSGA-II(Non-dominated Sorting Genetic Algorithm II)算法得到换电柜选址定容方案。研究结果表明:仿真模拟得出的换电需求时间分布预测值与实际值基本吻合,换电需求在11:00,14:00,17:00和20:00左右急剧增长,且11:00和14:00左右的换电需求量显著高于17:00和20:00左右的换电需求量,外卖骑手配送路径仿真模拟方法在换电需求预测上具有较高的预测精度;换电柜选址方案不能同时满足运营商和用户利益均为最优,用户满意度的提高需以增加运营商总成本为代价;同时,兼顾运营商和用户利益的新乡市主城区外卖配送电动自行车换电柜最佳建设数量为26,其中,容量为11的换电柜11个,容量为22的换电柜8个,容量为33的换电柜7个;新乡市主城区应按照备选点编号15-7-19-17依次新增换电柜至30个,此时,用户满意度最大,若继续增加换电柜建设数量,只会增加运营商总成本。展开更多
文摘基于观测数据和作物模型相同化的田块尺度作物生长监测,对于农田精准管理具有重要意义。为构建能准确模拟旱区春小麦长势和产量的同化模拟模型,该研究利用SWAP(soil-water-atmosphere-plant)模型和迭代集合平滑器算法(iterative ensemble smoother,IES),构建了适合旱区春小麦的SWAP-IES同化模拟系统,并利用2019—2020年田间观测试验数据,评估了同化叶面积指数(leaf area index,LAI)、土壤水分(soil water content,SW)及其组合在旱区春小麦生长模拟和估产中的作用。结果表明,相较于无同化情景,在吸收6次土壤水分观测数据后,模型对土壤水分模拟的R^(2)从0.48提升到0.87。同化LAI时,各水分胁迫处理下LAI的模拟精度均最高,R^(2)从无同化的0.35~0.62提升到0.76~0.96。同化LAI+SW时,各处理对生物量模拟的精度均最高,R^(2)从无同化的0.40~0.67提升到0.73~0.96。轻度水分胁迫处理(T4~T5)下,仅同化LAI即可达到较好的估产效果,相对误差为4.05%~9.17%,而在中度或重度水分胁迫处理(T1~T3)下,准确的产量估算需同时吸收LAI和SW,相对误差为3.87%~8.38%。开花期和拔节期的观测数据对提高SWAP-IES系统估产精度的作用最大,同时吸收开花期和拔节期LAI+SW观测数据时估产的R^(2)可从无同化的0.45提高到0.79。说明所构建的SWAP-IES同化模拟系统,在融入开花期和拔节期等关键生育期的观测数据后能有效模拟不同水分处理下春小麦生长和产量形成过程,可为田块尺度下旱区春小麦精准监测提供技术参考。