Based on the properties of ordered weighted averaging (OWA) operator and regular increasing monotone (RIM) quantifier, three methods for generating monotonic OWA operator weights are proposed. They are geometric OWA o...Based on the properties of ordered weighted averaging (OWA) operator and regular increasing monotone (RIM) quantifier, three methods for generating monotonic OWA operator weights are proposed. They are geometric OWA operator weights, equidifferent OWA operator weights and the modified RIM quantifier OWA weights. Compared with most of the common OWA methods for generating weights, the methods proposed in this paper are more intuitive and efficient in computation. And as there are more than one solution in most cases, the decision maker can set some initial condition and chooses the appropriate solution in the real decision process, which increases the flexibility of decision making to some extent. All these three OWA methods for generating weights are illustrated by numerical examples.展开更多
In this paper, we present a fuzzy linguistic scale, which is characterized by triangular fuzzy numbers on [1/9, 9], for the comparison between two alternatives, and introduce a possibility degree formula for comparing...In this paper, we present a fuzzy linguistic scale, which is characterized by triangular fuzzy numbers on [1/9, 9], for the comparison between two alternatives, and introduce a possibility degree formula for comparing triangular fuzzy numbers. We utilize the fuzzy linguistic scale to construct a linguistic preference matrix, and propose a fuzzy induced ordered weighted geometric averaging (FIOWGA) operator to aggregate linguistic preference information. A method based on the fuzzy linguistic scale and FIOWGA operator for decision-making problems is presented. Finally, an illustrative example is given to verify the developed method and to demonstrate its feasibility and effectiveness.展开更多
By applying the aggregation operator γ-operator and introducing a new method for global data contribution, the problems of information loss and the decrease of running efficiency in FuzzyJ Toolkit, an expert system s...By applying the aggregation operator γ-operator and introducing a new method for global data contribution, the problems of information loss and the decrease of running efficiency in FuzzyJ Toolkit, an expert system shell, can be effectively solved. The example shows that the approach can overcome imprecision of max-operator and min-operator used during the process of fuzzy reasoning. Therefore, the information accuracy and the system performance can be effectively improved, which promotes the usability of FuzzyJ Toolkit.展开更多
In the mutual transform between the number-difference state and the phase state corresponding to the operational phase operator we find that there exists an end-point ambiguousness. This problem can be avoided by Ligh...In the mutual transform between the number-difference state and the phase state corresponding to the operational phase operator we find that there exists an end-point ambiguousness. This problem can be avoided by Lighthill's method.展开更多
In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fu...In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fuzzy information granulation and least squares support vector machine(LS-SVM)optimized by chaos particle swarm optimization(CPSO).Due to the nonlinearity and fluctuation of the passenger flow,firstly,fuzzy information granulation is used to extract the valid data from the window according to the requirement.Secondly,CPSO that has strong global search ability is applied to optimize the parameters of the LS-SVM forecasting model.Finally,the combined model is used to forecast the fluctuation range of early peak passenger flow at Tiyu Xilu Station of Guangzhou Metro Line 3 in 2014,and the results are compared and analyzed with other models.Simulation results demonstrate that the combined forecasting model can effectively track the fluctuation of passenger flow,which provides an effective method for predicting the fluctuation range of short-term passenger flow in the future.展开更多
A new intelligent anti-swing control scheme,which combined fuzzy neural network(FNN) and sliding mode control(SMC) with particle swarm optimization(PSO),was presented for bridge crane.The outputs of three fuzzy neural...A new intelligent anti-swing control scheme,which combined fuzzy neural network(FNN) and sliding mode control(SMC) with particle swarm optimization(PSO),was presented for bridge crane.The outputs of three fuzzy neural networks were used to approach the uncertainties of the positioning subsystem,lifting-rope subsystem and anti-swing subsystem.Then,the parameters of the controller were optimized with PSO to enable the system to have good dynamic performances.During the process of high-speed load hoisting and dropping,this method can not only realize the accurate position of the trolley and eliminate the sway of the load in spite of existing uncertainties,and the maximum swing angle is only ±0.1 rad,but also completely eliminate the chattering of conventional sliding mode control and improve the robustness of system.The simulation results show the correctness and validity of this method.展开更多
Adaptive Type-2 fuzzy control possesses control performance better than the traditional adaptive fuzzy control.However,heavy computation burden obviously blocks the utilization of adaptive Type-2 fuzzy control in indu...Adaptive Type-2 fuzzy control possesses control performance better than the traditional adaptive fuzzy control.However,heavy computation burden obviously blocks the utilization of adaptive Type-2 fuzzy control in industrial application.By adopting novel piecewise fuzzy sets and center-average type-reduction,a simplified adaptive interval Type-2 fuzzy controller involving less computation is developed for practical industrial application.In the proposed controller,the inputs are divided into several subintervals and then two piecewise fuzzy sets are used for each subinterval.With the manner of piecewise fuzzy sets and a novel fuzzy rules inference engine,only part of fuzzy rules are simultaneously activated in one control loop,which exponentially decreases the computation and makes the controller appropriate in industrial application.The simulation and experimental study,involving the popular magnetic levitation platform,shows the predicted system with theoretical stability and good tracking performance.The analysis indicates that there is far less computation of the proposed controller than the traditional adaptive interval Type-2 fuzzy controller,especially when the number of fuzzy rules and fuzzy sets is large,and the controller still maintains good control performance as the traditional one.展开更多
Linguistic dynamic systems(LDS)are dynamic processes involving computing with words(CW)for modeling and analysis of complex systems.In this paper,a fuzzy neural network(FNN)structure of LDS was proposed.In addition,an...Linguistic dynamic systems(LDS)are dynamic processes involving computing with words(CW)for modeling and analysis of complex systems.In this paper,a fuzzy neural network(FNN)structure of LDS was proposed.In addition,an improved nonlinear particle swarm optimization was employed for training FNN.The experiment results on logistics formulation demonstrates the feasibility and the efficiency of this FNN model.展开更多
In the inking system of an offset printing press,a vibrator roller distributes ink not only in the circumferential direction but also in the axial direction.In the control process,if ink amount is determined only by t...In the inking system of an offset printing press,a vibrator roller distributes ink not only in the circumferential direction but also in the axial direction.In the control process,if ink amount is determined only by the dot area coverage without considering the impact of vibrator roller's oscillation,the printing colour quality will be reduced.This paper describes a method of calculating the impact factor of vibrator roller' s oscillation.First,the oscillation performance is analyzed and sample data of impact factor is got.Then,a fuzzy controller used for the calculation of the impact factor is designed,and genetic algorithm is used to optimize membership functions and obtain the fuzzy control rules automatically.This fuzzy controller can be used to calculate impact factors for any printing condition,and the impact factors can be used for ink amount control in printing process and it is important for higher printing colour quality and lowering ink and paper waste.展开更多
In this paper, the authors propose a computational procedure by using fuzzy approach to fred the optimal solution of quadratic programming problems. The authors divide the calculation of the optimal solution into two ...In this paper, the authors propose a computational procedure by using fuzzy approach to fred the optimal solution of quadratic programming problems. The authors divide the calculation of the optimal solution into two stages. In the first stage the authors determine the unconstrained minimization and check its feasibility. The second stage, the authors explore the feasible region from initial point to another point until the authors get the optimal point by using Lagrange multiplier. A numerical example is included to support as illustration of the paper.展开更多
Group decision making plays an important role in various fields of management decision and economics. In this paper, we develop two methods for hesitant fuzzy multiple criteria group decision making with group consens...Group decision making plays an important role in various fields of management decision and economics. In this paper, we develop two methods for hesitant fuzzy multiple criteria group decision making with group consensus in which all the experts use hesitant fuzzy decision matrices (HFDMs) to express their preferences. The aim of this paper is to present two novel consensus models applied in different group decision making situations, which are composed of consensus checking processes, consensus-reaching processes, and selection processes. All the experts make their own judgments on each alternative over multiple criteria by hesitant fuzzy sets, and then the aggregation of each hesitant fuzzy set under each criterion is calculated by the aggregation operators. Furthermore, we can calculate the distance between any two aggregations of hesitant fuzzy sets, based on which the deviation between any two experts is yielded. After introducing the consensus measure, we develop two kinds of consensus-reaching procedures and then propose two step-by-step algorithms for hesitant fuzzy multiple criteria group decision making. A numerical example concerning the selection of selling ways about 'Trade-Ins' for Apple Inc. is provided to illustrate and verify the developed approaches. In this example, the methods which aim to reach a high consensus of all the experts before the selection process can avoid some experts' preference values being too high or too low. After modifying the previous preference information by using our consensus measures, the result of the selection process is much more reasonable.展开更多
Type-2 fuzzy controllers have been mostly viewed as black-box function generators. Revealing the analytical structure of any type-2 fuzzy controller is important as it will deepen our understanding of how and why a ty...Type-2 fuzzy controllers have been mostly viewed as black-box function generators. Revealing the analytical structure of any type-2 fuzzy controller is important as it will deepen our understanding of how and why a type-2 fuzzy controller functions and lay a foundation for more rigorous system analysis and design. In this study, we derive and analyze the analytical structure of an interval type-2 fuzzy controller that uses the following identical elements: two nonlinear interval type-2 input fuzzy sets for each variable, four interval type-2 singleton output fuzzy sets, a Zadeh AND operator, and the Karnik-Mendel type reducer. Through dividing the input space of the interval type-2 fuzzy controller into 15 partitions, the input-output relationship for each local region is derived. Our derivation shows explicitly that the controller is approximately equivalent to a nonlinear proportional integral or proportional differential controller with variable gains. Furthermore, by comparing with the analytical structure of its type-1 counterpart, potential advantages of the interval type-2 fuzzy controller are analyzed. Finally, the reliability of the analysis results and the effectiveness of the interval type-2 fuzzy controller are verified by a simulation and an experiment.展开更多
文摘Based on the properties of ordered weighted averaging (OWA) operator and regular increasing monotone (RIM) quantifier, three methods for generating monotonic OWA operator weights are proposed. They are geometric OWA operator weights, equidifferent OWA operator weights and the modified RIM quantifier OWA weights. Compared with most of the common OWA methods for generating weights, the methods proposed in this paper are more intuitive and efficient in computation. And as there are more than one solution in most cases, the decision maker can set some initial condition and chooses the appropriate solution in the real decision process, which increases the flexibility of decision making to some extent. All these three OWA methods for generating weights are illustrated by numerical examples.
基金The National Natural Science Foundation of China(79970093) the Ph.D. Dissertation Foundation of Southeast University- NARI-Relays Electric Co. Ltd.
文摘In this paper, we present a fuzzy linguistic scale, which is characterized by triangular fuzzy numbers on [1/9, 9], for the comparison between two alternatives, and introduce a possibility degree formula for comparing triangular fuzzy numbers. We utilize the fuzzy linguistic scale to construct a linguistic preference matrix, and propose a fuzzy induced ordered weighted geometric averaging (FIOWGA) operator to aggregate linguistic preference information. A method based on the fuzzy linguistic scale and FIOWGA operator for decision-making problems is presented. Finally, an illustrative example is given to verify the developed method and to demonstrate its feasibility and effectiveness.
文摘By applying the aggregation operator γ-operator and introducing a new method for global data contribution, the problems of information loss and the decrease of running efficiency in FuzzyJ Toolkit, an expert system shell, can be effectively solved. The example shows that the approach can overcome imprecision of max-operator and min-operator used during the process of fuzzy reasoning. Therefore, the information accuracy and the system performance can be effectively improved, which promotes the usability of FuzzyJ Toolkit.
基金the Ph. D Tutoring Programme of the Educational Ministry of China
文摘In the mutual transform between the number-difference state and the phase state corresponding to the operational phase operator we find that there exists an end-point ambiguousness. This problem can be avoided by Lighthill's method.
基金National Natural Science Foundation of China(No.61663021)Science and Technology Support Project of Gansu Province(No.1304GKCA023)Scientific Research Project in University of Gansu Province(No.2017A-025)
文摘In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fuzzy information granulation and least squares support vector machine(LS-SVM)optimized by chaos particle swarm optimization(CPSO).Due to the nonlinearity and fluctuation of the passenger flow,firstly,fuzzy information granulation is used to extract the valid data from the window according to the requirement.Secondly,CPSO that has strong global search ability is applied to optimize the parameters of the LS-SVM forecasting model.Finally,the combined model is used to forecast the fluctuation range of early peak passenger flow at Tiyu Xilu Station of Guangzhou Metro Line 3 in 2014,and the results are compared and analyzed with other models.Simulation results demonstrate that the combined forecasting model can effectively track the fluctuation of passenger flow,which provides an effective method for predicting the fluctuation range of short-term passenger flow in the future.
基金Project(51075289) supported by the National Natural Science Foundation of ChinaProject(20122014) supported by the Doctor Foundation of Taiyuan University of Science and Technology,China
文摘A new intelligent anti-swing control scheme,which combined fuzzy neural network(FNN) and sliding mode control(SMC) with particle swarm optimization(PSO),was presented for bridge crane.The outputs of three fuzzy neural networks were used to approach the uncertainties of the positioning subsystem,lifting-rope subsystem and anti-swing subsystem.Then,the parameters of the controller were optimized with PSO to enable the system to have good dynamic performances.During the process of high-speed load hoisting and dropping,this method can not only realize the accurate position of the trolley and eliminate the sway of the load in spite of existing uncertainties,and the maximum swing angle is only ±0.1 rad,but also completely eliminate the chattering of conventional sliding mode control and improve the robustness of system.The simulation results show the correctness and validity of this method.
基金Project(51005253) supported by the National Natural Science Foundation of ChinaProject(2012ZX02702006-003) supported by the National Science and Technology Major Program of ChinaProject(JMTZ201101) supported by the Key Laboratory for Precision & Non-traditional Machining of Ministry of Education,Dalian University of Technology,China
文摘Adaptive Type-2 fuzzy control possesses control performance better than the traditional adaptive fuzzy control.However,heavy computation burden obviously blocks the utilization of adaptive Type-2 fuzzy control in industrial application.By adopting novel piecewise fuzzy sets and center-average type-reduction,a simplified adaptive interval Type-2 fuzzy controller involving less computation is developed for practical industrial application.In the proposed controller,the inputs are divided into several subintervals and then two piecewise fuzzy sets are used for each subinterval.With the manner of piecewise fuzzy sets and a novel fuzzy rules inference engine,only part of fuzzy rules are simultaneously activated in one control loop,which exponentially decreases the computation and makes the controller appropriate in industrial application.The simulation and experimental study,involving the popular magnetic levitation platform,shows the predicted system with theoretical stability and good tracking performance.The analysis indicates that there is far less computation of the proposed controller than the traditional adaptive interval Type-2 fuzzy controller,especially when the number of fuzzy rules and fuzzy sets is large,and the controller still maintains good control performance as the traditional one.
基金National Natural Science Foundation of China(No.60873179)Doctoral Program Foundation of Institutions of Higher Education of China(No.20090121110032)+3 种基金Shenzhen Science and Technology Research Foundations,China(No.JC200903180630A,No.ZYB200907110169A)Key Project of Institutes Serving for the Economic Zone on the Western Coast of the Tai wan Strait,ChinaNatural Science Foundation of Xiamen,China(No.3502Z2093018)Projects of Education Depart ment of Fujian Province of China(No.JK2009017,No.JK2010031,No.JA10196)
文摘Linguistic dynamic systems(LDS)are dynamic processes involving computing with words(CW)for modeling and analysis of complex systems.In this paper,a fuzzy neural network(FNN)structure of LDS was proposed.In addition,an improved nonlinear particle swarm optimization was employed for training FNN.The experiment results on logistics formulation demonstrates the feasibility and the efficiency of this FNN model.
基金Supported by the National Science and Technology Supporting Program(No.2012BAF13B05-1)National Natural Science Foundation(No.51105009)Beijing Natural Science Foundation(No.3113025)
文摘In the inking system of an offset printing press,a vibrator roller distributes ink not only in the circumferential direction but also in the axial direction.In the control process,if ink amount is determined only by the dot area coverage without considering the impact of vibrator roller's oscillation,the printing colour quality will be reduced.This paper describes a method of calculating the impact factor of vibrator roller' s oscillation.First,the oscillation performance is analyzed and sample data of impact factor is got.Then,a fuzzy controller used for the calculation of the impact factor is designed,and genetic algorithm is used to optimize membership functions and obtain the fuzzy control rules automatically.This fuzzy controller can be used to calculate impact factors for any printing condition,and the impact factors can be used for ink amount control in printing process and it is important for higher printing colour quality and lowering ink and paper waste.
文摘In this paper, the authors propose a computational procedure by using fuzzy approach to fred the optimal solution of quadratic programming problems. The authors divide the calculation of the optimal solution into two stages. In the first stage the authors determine the unconstrained minimization and check its feasibility. The second stage, the authors explore the feasible region from initial point to another point until the authors get the optimal point by using Lagrange multiplier. A numerical example is included to support as illustration of the paper.
基金Project supported by the National Natural Science Foundation of China (Nos. 61273209, 71501135, 71571123, and 71532007)
文摘Group decision making plays an important role in various fields of management decision and economics. In this paper, we develop two methods for hesitant fuzzy multiple criteria group decision making with group consensus in which all the experts use hesitant fuzzy decision matrices (HFDMs) to express their preferences. The aim of this paper is to present two novel consensus models applied in different group decision making situations, which are composed of consensus checking processes, consensus-reaching processes, and selection processes. All the experts make their own judgments on each alternative over multiple criteria by hesitant fuzzy sets, and then the aggregation of each hesitant fuzzy set under each criterion is calculated by the aggregation operators. Furthermore, we can calculate the distance between any two aggregations of hesitant fuzzy sets, based on which the deviation between any two experts is yielded. After introducing the consensus measure, we develop two kinds of consensus-reaching procedures and then propose two step-by-step algorithms for hesitant fuzzy multiple criteria group decision making. A numerical example concerning the selection of selling ways about 'Trade-Ins' for Apple Inc. is provided to illustrate and verify the developed approaches. In this example, the methods which aim to reach a high consensus of all the experts before the selection process can avoid some experts' preference values being too high or too low. After modifying the previous preference information by using our consensus measures, the result of the selection process is much more reasonable.
基金supported by the Xinjiang Astronomical Observatory,China(No.2014KL012)the Major State Basic Research Development Program of China(No.2015CB857100)+1 种基金the National Natural Science Foundation of China(Nos.51490660 and 51405362)the Fundamental Research Funds for the Central Universities,China(No.SPSY021401)
文摘Type-2 fuzzy controllers have been mostly viewed as black-box function generators. Revealing the analytical structure of any type-2 fuzzy controller is important as it will deepen our understanding of how and why a type-2 fuzzy controller functions and lay a foundation for more rigorous system analysis and design. In this study, we derive and analyze the analytical structure of an interval type-2 fuzzy controller that uses the following identical elements: two nonlinear interval type-2 input fuzzy sets for each variable, four interval type-2 singleton output fuzzy sets, a Zadeh AND operator, and the Karnik-Mendel type reducer. Through dividing the input space of the interval type-2 fuzzy controller into 15 partitions, the input-output relationship for each local region is derived. Our derivation shows explicitly that the controller is approximately equivalent to a nonlinear proportional integral or proportional differential controller with variable gains. Furthermore, by comparing with the analytical structure of its type-1 counterpart, potential advantages of the interval type-2 fuzzy controller are analyzed. Finally, the reliability of the analysis results and the effectiveness of the interval type-2 fuzzy controller are verified by a simulation and an experiment.