NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy leve...NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy levels and possible redox reactions at the NiO_(x)/perovskite interface severely limit the performance of NiO_(x) based inverted perovskite solar cells.Herein,we introduce a p-type self-assembled monolayer between NiO_(x)and perovskite layers to modify the interface and block the undesirable redox reaction between perovskite and NiO_(x)The selfassembled monolayer molecules all contain phosphoric acid function groups,which can be anchored onto the NiOr surface and passivate the surface defect.Moreover,the introduction of self-assembled monolayers can regulate the energy level structure of NiO_(x),reduce the interfacial band energy offset,and hence promote the hole transport from perovskite to NiO_(x)layer.Consequently,the device performance is significantly enhanced in terms of both power conversion efficiency and stability.展开更多
Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this wo...Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this work,the development potentials of the PHS and geothermal utilization systems were evaluated.Considering the geological conditions and meteorological data available of Jiahe abandoned mine,a simple evaluation model for PHS and geothermal utilization was established.The average efficiency of the PHS system exceeds 70%and the regulatable energy of a unit volume is over 1.53 kW·h/m^(3).The PHS system achieves optimal performance when the wind/solar power ratio reaches 0.6 and 0.3 in daily and year scale,respectively.In the geothermal utilization system,the outlet temperature and heat production are significantly affected by the injection flow rate.The heat production performance is more stable at lower rate flow,and the proportion of heat production is higher in the initial stage at greater flow rate.As the operating time increases,the proportion of heat production gradually decreases.The cyclic heat storage status has obvious advantages in heat generation and cooling.Furthermore,the energy-saving and emission reduction benefits of PHS and geothermal utilization systems were calculated.展开更多
This study aims to evaluate the solar and wind energy potential across Razavi Khorasan Province,Iran,with a specific focus on the Khaf region.A preliminary assessment of mean solar radiation,mean wind speeds,and Weibu...This study aims to evaluate the solar and wind energy potential across Razavi Khorasan Province,Iran,with a specific focus on the Khaf region.A preliminary assessment of mean solar radiation,mean wind speeds,and Weibull distribution parameters was conducted for different towns and zones within the province.The findings showed that Khaf has favorable characteristics for further analysis.The solar and wind energy metrics examined include global horizontal irradiance,clearness index,wind rose patterns,and turbulence intensity.At a height of 40 m,Khaf’s wind power density reached 1650 W/m^(2),indicating exceptional wind energy generation potential.Additionally,Khaf received an average annual solar radiation of 2046 kW·h/m^(2),representing significant solar energy potential.Harnessing these substantial renewable resources in Khaf could allow Razavi Khorasan Province to reduce reliance on fossil fuels,improve energy sustainability,and mitigate climate change impacts.This research contributes an in-depth assessment of Razavi Khorasan's solar and wind energy potential,particularly for the promising Khaf region.Further work may examine optimal sites for renewable energy projects and grid integration strategies to leverage these resources.展开更多
Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning p...Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning proliferation of abandoned mines posing a persistent issue.Addressing the challenges and opportunities presented by these abandoned mines,this paper advocates for a scientific approach centered on the advancement of pumped storage energy alongside gas-oil complementary energy.Leveraging abandoned mine tunnels to establish pumped storage power stations holds significant ecological and economic importance for repurposing these sites.This initiative not only serves as an effective means to restore the ecological balance in mining regions but also provides an environmentally friendly approach to repurposing abandoned mine tunnels,offering a blueprint for economically viable pumped storage power stations.This article delineates five crucial scientific considerations and outlines seven primary models for the utilization of abandoned mine sites,delineating a novel,comprehensive pathway for energy and power development that emphasizes multi-energy complementarity and synergistic optimization within abandoned mines.展开更多
To develop suitable grouting materials for water conveyance tunnels in cold regions,firstly,this study investigated the performance evolution of ferrite-rich sulfoaluminate-based composite cement(FSAC grouting materia...To develop suitable grouting materials for water conveyance tunnels in cold regions,firstly,this study investigated the performance evolution of ferrite-rich sulfoaluminate-based composite cement(FSAC grouting material)at 20 and 3℃.The results show that low temperature only delays the strength development of FSAC grouting material within the first 3 d.Then,the effect of four typical early strength synergists on the early properties of FSAC grouting material was evaluated to optimize the early(£1 d)strength at 3℃.The most effective synergist,Ca(HCOO)_(2),which enhances the low-temperature early strength without compromising fluidity was selected based on strength and fluidity tests.Its micro-mechanism was analyzed by XRD,TG,and SEM methods.The results reveal that the most suitable dosage range is 0.3 wt%−0.5 wt%.Proper addition of Ca(HCOO)_(2)changed the crystal morphology of the hydration products,decreased the pore size and formed more compact hydration products by interlocking and overlapping.However,excessive addition of Ca(HCOO)_(2)inhibited the hydration reaction,resulting in a simple and loose structure of the hydration products.The research results have reference value for controlling surrounding rock deformation and preventing water and mud inrushes during the excavation in cold region tunnels.展开更多
Objective To observe the value of real-time shear wave elastography(SWE)combined with biochemical indicators for evaluating liver injury in patients with chronic kidney disease(CKD).Methods Totally 210 patients with C...Objective To observe the value of real-time shear wave elastography(SWE)combined with biochemical indicators for evaluating liver injury in patients with chronic kidney disease(CKD).Methods Totally 210 patients with CKD(CKD group)and 64 healthy subjects(control group)were retrospectively enrolled.Patients in CKD group were further divided into CKD1—5 subgroups according to CKD stages.SWE parameters of liver and kidney,including mean value,the maximum value and the median value of Young's modulus(EQI mean,EQI max and EQI med)were compared between CKD subgroups and control group.Spearman correlation analysis were performed to explore the correlations of liver and kidney SWE parameters with CKD stage,as well as of liver SWE parameters with biochemical indicators.Multivariate logistic regression analysis was used to screen independent predictors of liver injury in CKD patients.Receiver operating characteristic curves were drawn,the area under the curves(AUC)were calculated to evaluate the efficacy of the independent predictors alone and their combination for assessing liver injury in CKD patients.Results Significant differences of liver and kidney SWE parameters were found among CKD subgroups and control group(all P≤0.001).Pairwise comparison showed that liver SWE parameters in CKD5 subgroup and liver EQI max in CKD4 subgroup were all higher than those in control group(all P<0.003).Kidney SWE parameters in CKD3 subgroup were all higher than those in control group,while in CKD4 subgroup were all higher than those in control group and CKD1—3 subgroup(all P<0.003).Kidney EQI mean and EQI med in CKD5 subgroup were all higher than those in control group and CKD1—4 subgroup,while kidney EQI max in CKD5 subgroup were higher than those in control group and CKD1—3 subgroup(all P<0.003).Liver and kidney SWE parameters were lowly-moderately and positively correlated with CKD stages(r=0.364—0.665,all P<0.001).Liver SWE parameters of CKD were weakly and positively correlated with alkaline phosphatase(ALP)(r=0.229—0.248,all P<0.01).Theγ-glutamyl transferase,ALP and liver EQI max were all independent predictors of liver injury in CKD patients(all P<0.01),with AUC for evaluating liver injury in CKD patients alone of 0.645,0.756 and 0.741,respectively,lower than that of their combination(0.851,all P<0.01).Conclusion Real-time SWE combined with liver function indicators could reflect degree of liver injury in patients with different CKD stages.展开更多
The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humid...The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humidity affect the responsiveness of commonly used high-energetic explosives,a series of BAM(Bundesanstalt für Materialforschung und-prüfung)impact and friction sensitivity tests were carried out to determine the critical impact energy and critical load pressure of four representative high-energetic explosives(RDX,HMX,PETN and CL-20)under different temperatures,particle sizes,and air humidity conditions.The experimental findings facilitated an examination of temperature and particle size affecting the sensitivity of high-energetic explosives,along with an assessment of the influence of air humidity on sensitivity testing.The results clearly indicate that high-energetic explosives display a substantial decline in critical reaction energy when subjected to micrometre-sized particles and an air humidity level of 45%at a temperature of 90℃.Furthermore,it was noted that the critical reaction energy of high-energetic explosives diminishes with an increase in temperature within 25℃−90℃.In the same vein,as the particle sizes of high-energetic explosives increase,so does the critical reaction energy for micrometre-sized particles.High air humidity significantly affects the sensitivity testing of high-energetic explosives,emphasizing the importance of refraining from conducting sensitivity tests in such conditions.展开更多
Objective To observe the value of deep learning echocardiographic intelligent model for evaluation on left ventricular(LV)regional wall motion abnormalities(RWMA).Methods Apical two-chamber,three-chamber and four-cham...Objective To observe the value of deep learning echocardiographic intelligent model for evaluation on left ventricular(LV)regional wall motion abnormalities(RWMA).Methods Apical two-chamber,three-chamber and four-chamber views two-dimensional echocardiograms were obtained prospectively in 205 patients with coronary heart disease.The model for evaluating LV regional contractile function was constructed using a five-fold cross-validation method to automatically identify the presence of RWMA or not,and the performance of this model was assessed taken manual interpretation of RWMA as standards.Results Among 205 patients,RWMA was detected in totally 650 segments in 83 cases.LV myocardial segmentation model demonstrated good efficacy for delineation of LV myocardium.The average Dice similarity coefficient for LV myocardial segmentation results in the apical two-chamber,three-chamber and four-chamber views was 0.85,0.82 and 0.88,respectively.LV myocardial segmentation model accurately segmented LV myocardium in apical two-chamber,three-chamber and four-chamber views.The mean area under the curve(AUC)of RWMA identification model was 0.843±0.071,with sensitivity of(64.19±14.85)%,specificity of(89.44±7.31)%and accuracy of(85.22±4.37)%.Conclusion Deep learning echocardiographic intelligent model could be used to automatically evaluate LV regional contractile function,hence rapidly and accurately identifying RWMA.展开更多
Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,th...Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,the energy oscillation of coherent energy transfer is exceedingly difficult to capture because of its evanescence due to the interaction with a thermal environment.Here a microscopic quantum model is used to study the time evolution of electrons triggered energy transfer between coherently coupled donoracceptor molecules in scanning tunneling microscope(STM).A series of topics in the plasmonic nanocavity(PNC)coupled donor-acceptor molecules system are discussed,including resonant and nonresonant coherent energy transfer,dephasing assisted energy transfer,PNC coupling strength dependent energy transfer,Fano resonance of coherently coupled donor-acceptor molecules,and polariton-mediated energy transfer.展开更多
The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,inte...The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.展开更多
To enhance the mechanical properties of molybdenum alloys at both room and high temperatures,Mo-14Re-1CeO_(2)alloy was synthesized using the powder metallurgy method,and the corresponding microstructure and mechanical...To enhance the mechanical properties of molybdenum alloys at both room and high temperatures,Mo-14Re-1CeO_(2)alloy was synthesized using the powder metallurgy method,and the corresponding microstructure and mechanical properties were characterized.The results indicate that the ultimate tensile strength of Mo-14Re-1CeO_(2)reaches 657 MPa,with a total elongation of 35.2%,significantly higher than those of pure molybdenum(453 MPa,and 7.01%).Furthermore,the compression strength of Mo-14Re-1CeO_(2)at high temperature(1200℃)achieves 355 MPa,which is still larger than that of pure molybdenum(221 MPa).It is revealed that there is a coherent interface between CeO_(2)and the Mo-14Re matrix with CeO_(2)particles uniformly distributed in both intergranular and intragranular regions.The improvements in mechanical properties are primarily attributed to the formation of Mo-Re solid solution,grain refinement,and dispersion strengthening effect of CeO_(2).展开更多
Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a...Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials.This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years.The emergence of new raw material,the advancement of perparation methods and manufacturing techniques,and the potential applications of permanent ferrite materials are introduced and discussed.Specifically,nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources,and therefore it could be a promising development trendency.展开更多
Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases ...Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases in titanium alloys.By summarizing the recent investigations,the phase transformation processes corresponding to the common phases and also some less reported phases are reviewed.For the phase transformation only involvingαandβphases,it can be divided intoβ→αtransformation and a reverse transformation.The former one has been demonstrated from the orientation relationship betweenαandβphases and the regulation ofαmorphology.For the latter transformation,the role of the stress has been discussed.In terms of the metastable phases,the mechanisms of phase formation and their effects on microstructure and mechanical properties have been discussed.Finally,some suggestions about the development of titanium alloys have been proposed.展开更多
This study investigates the differences in pragmatic competence between Hong Kong and Chinese mainland university students.Participants included 19 native speakers of English,115 Chinese mainland students,divided into...This study investigates the differences in pragmatic competence between Hong Kong and Chinese mainland university students.Participants included 19 native speakers of English,115 Chinese mainland students,divided into those who had spent time abroad in an English-speaking country(CM A)and those who had not(CM NA),and 97 Hong Kong students,divided into those from an English-medium secondary school(Hong Kong EMI)and those from a Chinese-medium school(Hong Kong CMI).Linguistic proficiency was measured by a C-test,and pragmatic competence by a Metapragmatic Knowledge Test,an Irony Test and a Monologic Role Play.Group scores were compared using ANCOVAs to control for differences in proficiency.The results point to a continuum of pragmatic competence—EMI>CMI>CM A>CM NA—reflecting the groups’access to English in real-life contexts.The differences between the Hong Kong groups and the Chinese mainland groups were clearest in those tests measuring processing capacity(i.e.,Irony Response Time and the Monologic Role Play).CM A,but not CM NA,performed as well as the Hong Kong groups on measures of metapragmatic awareness.The results are discussed in terms of Bialystok’s(1993)distinction between analyzed representation and control of processing.展开更多
A dye-sensitized photocatalyst combining Pt-loaded TiO_(2) and Ru(Ⅱ)tris-diimine sensitizer(RuP)was constructed and its activity for photochemical hydrogen evolution was compared with that of Pt-intercalated HCa_(2)N...A dye-sensitized photocatalyst combining Pt-loaded TiO_(2) and Ru(Ⅱ)tris-diimine sensitizer(RuP)was constructed and its activity for photochemical hydrogen evolution was compared with that of Pt-intercalated HCa_(2)Nb_(3)O_(10) nanosheets.When the sacrificial donor ethylenediaminetetraacetic acid(EDTA)disodium salt dihydrate was used,RuP/Pt/TiO_(2) showed higher activity than RuP/Pt/HCa_(2)Nb_(3)O_(10).In contrast,when NaI(a reversible electron donor)was used,RuP/Pt/TiO_(2) showed little activity due to back electron transfer to the electron acceptor(I_(3)-),which was gener-ated as the oxidation product of I-.By modification with anionic polymers(sodium poly(styrenesulfonate)or sodium polymethacrylate)that could inhibit the scavenging of conduction band electrons by I_(3)-,the H_(2) production activity from aqueous NaI was improved,but it did not exceed that of RuP/Pt/HCa_(2)Nb_(3)O_(10).Transient absorption measurements showed that the rate of semiconductor-to-dye back electron transfer was slower in the case of TiO_(2) than HCa_(2)Nb_(3)O_(10),but the electron transfer reaction to I3-was much faster.These results indicate that Pt/TiO_(2) is useful for reactions with sacrificial reductants(e.g.,EDTA),where the back electron transfer reaction to the more reducible product can be neglected.However,more careful design of the catalyst will be nec-essary when a reversible electron donor is employed.展开更多
Glued timber structure is one of the main forms of modern wood architecture,which has gradually developed towards mid-and high-rise buildings.Glue-laminated timber(GLT)is comprised of several laminates of parallel-to-...Glued timber structure is one of the main forms of modern wood architecture,which has gradually developed towards mid-and high-rise buildings.Glue-laminated timber(GLT)is comprised of several laminates of parallel-to-grain dimension lumber that are bonded together with durable,moisture resistant structural adhesives.GLT can be used in horizontal applications as a beam and in vertical applications as a post.So,its compressive performance has a significant impact on structural safety.Fiber reinforced polymers(FRPs)were commonly used to improve the bearing capacity of GLT components,and the structural and process parameters largely determined the reinforcement effect.This study was aimed at investigating the influence of structural and process parameters on the axial compression performance of GLT components.Three wrapping methods(middle-part,end-part and full wrapping)and three lengths(0.6,0.8,and 1.0 m)of wood post specimens were designed in this work and the axial compression performance and ductility of GLT post specimens modified by basalt fiber reinforced polymer(BFRP)were studied.The results showed that the effect of different BFRP wrapping methods on the compressive strength and elastic modulus of laminated wood was not statistically significant(P>0.05).The compressive bearing capacity of unreinforced GLT posts decreased with the increase of aspect ratio.The GLT posts with middle-part and end-part wrapping still followed this pattern,while the compressive bearing capacity of GLT posts with full wrapping showed a pattern of first decreasing and then increasing.For GLT with low aspect ratios(4.0 or 5.3),there was no correlation between the wrapping method and the compressive bearing capacity,while the compressive bearing capacity of GLT with a high aspect ratio(6.7)for middle-part,end-part and full wrapping increased by 3.5%,7.5%and 9.7%,respectively.Compared to the unreinforced group,the ultimate axial compressive strength and modulus of elasticity(MOE)of the 6-E series specimens reinforced at both ends decreased by 2.58%and 6.70%,respectively.The ultimate axial compressive strength of the 8-E specimens reinforced at both ends increased by 8.62%and the MOE decreased by 1.91%.The compressive strength of the 10-E specimens reinforced at both ends increased by 7.51%and the MOE increased by 8.14%.The failure modes of GLT with different aspects were consistent under the same BFRP wrapping,while the failure modes of GLT with the same aspect ratio were different for different BFRP wrapping methods.The ductility performance of GLT with different aspects ratio was improved by the BFRP wrapping.展开更多
The recrystallization behavior,grain boundary characteristic distribution,and mechanical properties of pure Cu sheets that were subjected to different cold rolling paths,and then annealed at 400°C for 10,30,60,an...The recrystallization behavior,grain boundary characteristic distribution,and mechanical properties of pure Cu sheets that were subjected to different cold rolling paths,and then annealed at 400°C for 10,30,60,and 420 min,were investigated.Different rolling paths changed the grain boundary orientations of cold-rolled copper,causing recrystallized grains to nucleate and grow in an oriented manner.However,the evolution of the texture indicated that cold-rolled copper with different rolling paths did not show an obvious preferred orientation after annealing.The RD-60 specimen exhibited the smallest grain size(6.6μm).The results indicated that the grain size and low-ΣCSL grain boundaries worked together to provide RD-60 samples with appropriate mechanical properties and high plasticity.The yield strength,ultimate tensile strength,and elongation of RD-60 sample were 81 MPa,230 MPa,and 49%,respectively.These results could provide guidance for tuning the microstructures and properties of pure Cu foils,as well as designing fabrication routes for pure Cu foils through processes such as rolling and drawing.展开更多
文摘NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy levels and possible redox reactions at the NiO_(x)/perovskite interface severely limit the performance of NiO_(x) based inverted perovskite solar cells.Herein,we introduce a p-type self-assembled monolayer between NiO_(x)and perovskite layers to modify the interface and block the undesirable redox reaction between perovskite and NiO_(x)The selfassembled monolayer molecules all contain phosphoric acid function groups,which can be anchored onto the NiOr surface and passivate the surface defect.Moreover,the introduction of self-assembled monolayers can regulate the energy level structure of NiO_(x),reduce the interfacial band energy offset,and hence promote the hole transport from perovskite to NiO_(x)layer.Consequently,the device performance is significantly enhanced in terms of both power conversion efficiency and stability.
基金Project(8212033)supported by the Natural Science Foundation of Beijing,ChinaProject(BBJ2023051)supported by the Fundamental Research Funds of China University of Mining and Technology-BeijingProject(SKLGDUEK202221)supported by the Innovation Fund Research Project,China。
文摘Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this work,the development potentials of the PHS and geothermal utilization systems were evaluated.Considering the geological conditions and meteorological data available of Jiahe abandoned mine,a simple evaluation model for PHS and geothermal utilization was established.The average efficiency of the PHS system exceeds 70%and the regulatable energy of a unit volume is over 1.53 kW·h/m^(3).The PHS system achieves optimal performance when the wind/solar power ratio reaches 0.6 and 0.3 in daily and year scale,respectively.In the geothermal utilization system,the outlet temperature and heat production are significantly affected by the injection flow rate.The heat production performance is more stable at lower rate flow,and the proportion of heat production is higher in the initial stage at greater flow rate.As the operating time increases,the proportion of heat production gradually decreases.The cyclic heat storage status has obvious advantages in heat generation and cooling.Furthermore,the energy-saving and emission reduction benefits of PHS and geothermal utilization systems were calculated.
文摘This study aims to evaluate the solar and wind energy potential across Razavi Khorasan Province,Iran,with a specific focus on the Khaf region.A preliminary assessment of mean solar radiation,mean wind speeds,and Weibull distribution parameters was conducted for different towns and zones within the province.The findings showed that Khaf has favorable characteristics for further analysis.The solar and wind energy metrics examined include global horizontal irradiance,clearness index,wind rose patterns,and turbulence intensity.At a height of 40 m,Khaf’s wind power density reached 1650 W/m^(2),indicating exceptional wind energy generation potential.Additionally,Khaf received an average annual solar radiation of 2046 kW·h/m^(2),representing significant solar energy potential.Harnessing these substantial renewable resources in Khaf could allow Razavi Khorasan Province to reduce reliance on fossil fuels,improve energy sustainability,and mitigate climate change impacts.This research contributes an in-depth assessment of Razavi Khorasan's solar and wind energy potential,particularly for the promising Khaf region.Further work may examine optimal sites for renewable energy projects and grid integration strategies to leverage these resources.
基金Project(202208340045)supported by the China Scholarship Council FundProject(U21A20110)supported by the Regional Innovation and Development Joint Fund of National Natural Science Foundation of China+1 种基金Project(EUCMR202201)supported by the Open Project Program of Anhui Engineering Research Center of Exploitation and Utilization of Closed/abandoned Mine Resources,ChinaProject(2023cxcyzx063)supported by the Anhui Province New Era Talent Education Project,China。
文摘Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning proliferation of abandoned mines posing a persistent issue.Addressing the challenges and opportunities presented by these abandoned mines,this paper advocates for a scientific approach centered on the advancement of pumped storage energy alongside gas-oil complementary energy.Leveraging abandoned mine tunnels to establish pumped storage power stations holds significant ecological and economic importance for repurposing these sites.This initiative not only serves as an effective means to restore the ecological balance in mining regions but also provides an environmentally friendly approach to repurposing abandoned mine tunnels,offering a blueprint for economically viable pumped storage power stations.This article delineates five crucial scientific considerations and outlines seven primary models for the utilization of abandoned mine sites,delineating a novel,comprehensive pathway for energy and power development that emphasizes multi-energy complementarity and synergistic optimization within abandoned mines.
基金Projcet(52279119)supported by the National Natural Science Foundation of ChinaProject(XZ202201ZY0021G)supported by the Science and Technology Planning Project of Xizang Autonomous Region,China+1 种基金Project(2019QZKK0904)supported by the Second Xizang Plateau Scientific Expedition and Research Program of ChinaProject(51922104)supported by the National Natural Science Foundation for Distinguished Young Scholars of China。
文摘To develop suitable grouting materials for water conveyance tunnels in cold regions,firstly,this study investigated the performance evolution of ferrite-rich sulfoaluminate-based composite cement(FSAC grouting material)at 20 and 3℃.The results show that low temperature only delays the strength development of FSAC grouting material within the first 3 d.Then,the effect of four typical early strength synergists on the early properties of FSAC grouting material was evaluated to optimize the early(£1 d)strength at 3℃.The most effective synergist,Ca(HCOO)_(2),which enhances the low-temperature early strength without compromising fluidity was selected based on strength and fluidity tests.Its micro-mechanism was analyzed by XRD,TG,and SEM methods.The results reveal that the most suitable dosage range is 0.3 wt%−0.5 wt%.Proper addition of Ca(HCOO)_(2)changed the crystal morphology of the hydration products,decreased the pore size and formed more compact hydration products by interlocking and overlapping.However,excessive addition of Ca(HCOO)_(2)inhibited the hydration reaction,resulting in a simple and loose structure of the hydration products.The research results have reference value for controlling surrounding rock deformation and preventing water and mud inrushes during the excavation in cold region tunnels.
文摘Objective To observe the value of real-time shear wave elastography(SWE)combined with biochemical indicators for evaluating liver injury in patients with chronic kidney disease(CKD).Methods Totally 210 patients with CKD(CKD group)and 64 healthy subjects(control group)were retrospectively enrolled.Patients in CKD group were further divided into CKD1—5 subgroups according to CKD stages.SWE parameters of liver and kidney,including mean value,the maximum value and the median value of Young's modulus(EQI mean,EQI max and EQI med)were compared between CKD subgroups and control group.Spearman correlation analysis were performed to explore the correlations of liver and kidney SWE parameters with CKD stage,as well as of liver SWE parameters with biochemical indicators.Multivariate logistic regression analysis was used to screen independent predictors of liver injury in CKD patients.Receiver operating characteristic curves were drawn,the area under the curves(AUC)were calculated to evaluate the efficacy of the independent predictors alone and their combination for assessing liver injury in CKD patients.Results Significant differences of liver and kidney SWE parameters were found among CKD subgroups and control group(all P≤0.001).Pairwise comparison showed that liver SWE parameters in CKD5 subgroup and liver EQI max in CKD4 subgroup were all higher than those in control group(all P<0.003).Kidney SWE parameters in CKD3 subgroup were all higher than those in control group,while in CKD4 subgroup were all higher than those in control group and CKD1—3 subgroup(all P<0.003).Kidney EQI mean and EQI med in CKD5 subgroup were all higher than those in control group and CKD1—4 subgroup,while kidney EQI max in CKD5 subgroup were higher than those in control group and CKD1—3 subgroup(all P<0.003).Liver and kidney SWE parameters were lowly-moderately and positively correlated with CKD stages(r=0.364—0.665,all P<0.001).Liver SWE parameters of CKD were weakly and positively correlated with alkaline phosphatase(ALP)(r=0.229—0.248,all P<0.01).Theγ-glutamyl transferase,ALP and liver EQI max were all independent predictors of liver injury in CKD patients(all P<0.01),with AUC for evaluating liver injury in CKD patients alone of 0.645,0.756 and 0.741,respectively,lower than that of their combination(0.851,all P<0.01).Conclusion Real-time SWE combined with liver function indicators could reflect degree of liver injury in patients with different CKD stages.
基金supported by National Natural Science Foundation of China(No.12272184).
文摘The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humidity affect the responsiveness of commonly used high-energetic explosives,a series of BAM(Bundesanstalt für Materialforschung und-prüfung)impact and friction sensitivity tests were carried out to determine the critical impact energy and critical load pressure of four representative high-energetic explosives(RDX,HMX,PETN and CL-20)under different temperatures,particle sizes,and air humidity conditions.The experimental findings facilitated an examination of temperature and particle size affecting the sensitivity of high-energetic explosives,along with an assessment of the influence of air humidity on sensitivity testing.The results clearly indicate that high-energetic explosives display a substantial decline in critical reaction energy when subjected to micrometre-sized particles and an air humidity level of 45%at a temperature of 90℃.Furthermore,it was noted that the critical reaction energy of high-energetic explosives diminishes with an increase in temperature within 25℃−90℃.In the same vein,as the particle sizes of high-energetic explosives increase,so does the critical reaction energy for micrometre-sized particles.High air humidity significantly affects the sensitivity testing of high-energetic explosives,emphasizing the importance of refraining from conducting sensitivity tests in such conditions.
文摘Objective To observe the value of deep learning echocardiographic intelligent model for evaluation on left ventricular(LV)regional wall motion abnormalities(RWMA).Methods Apical two-chamber,three-chamber and four-chamber views two-dimensional echocardiograms were obtained prospectively in 205 patients with coronary heart disease.The model for evaluating LV regional contractile function was constructed using a five-fold cross-validation method to automatically identify the presence of RWMA or not,and the performance of this model was assessed taken manual interpretation of RWMA as standards.Results Among 205 patients,RWMA was detected in totally 650 segments in 83 cases.LV myocardial segmentation model demonstrated good efficacy for delineation of LV myocardium.The average Dice similarity coefficient for LV myocardial segmentation results in the apical two-chamber,three-chamber and four-chamber views was 0.85,0.82 and 0.88,respectively.LV myocardial segmentation model accurately segmented LV myocardium in apical two-chamber,three-chamber and four-chamber views.The mean area under the curve(AUC)of RWMA identification model was 0.843±0.071,with sensitivity of(64.19±14.85)%,specificity of(89.44±7.31)%and accuracy of(85.22±4.37)%.Conclusion Deep learning echocardiographic intelligent model could be used to automatically evaluate LV regional contractile function,hence rapidly and accurately identifying RWMA.
基金supported by the State Scholarship Fund organized by the China Scholarship Council(CSC).
文摘Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,the energy oscillation of coherent energy transfer is exceedingly difficult to capture because of its evanescence due to the interaction with a thermal environment.Here a microscopic quantum model is used to study the time evolution of electrons triggered energy transfer between coherently coupled donoracceptor molecules in scanning tunneling microscope(STM).A series of topics in the plasmonic nanocavity(PNC)coupled donor-acceptor molecules system are discussed,including resonant and nonresonant coherent energy transfer,dephasing assisted energy transfer,PNC coupling strength dependent energy transfer,Fano resonance of coherently coupled donor-acceptor molecules,and polariton-mediated energy transfer.
基金Project(202302AB080024)supported by the Department of Science and Technology of Yunnan Province,China。
文摘The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.
基金supported by the National Key R&D Program of China(No.2022YFB3705402)。
文摘To enhance the mechanical properties of molybdenum alloys at both room and high temperatures,Mo-14Re-1CeO_(2)alloy was synthesized using the powder metallurgy method,and the corresponding microstructure and mechanical properties were characterized.The results indicate that the ultimate tensile strength of Mo-14Re-1CeO_(2)reaches 657 MPa,with a total elongation of 35.2%,significantly higher than those of pure molybdenum(453 MPa,and 7.01%).Furthermore,the compression strength of Mo-14Re-1CeO_(2)at high temperature(1200℃)achieves 355 MPa,which is still larger than that of pure molybdenum(221 MPa).It is revealed that there is a coherent interface between CeO_(2)and the Mo-14Re matrix with CeO_(2)particles uniformly distributed in both intergranular and intragranular regions.The improvements in mechanical properties are primarily attributed to the formation of Mo-Re solid solution,grain refinement,and dispersion strengthening effect of CeO_(2).
基金Project(1053320222852)supported by the Graduate Student Innovation Program of Central South University,China。
文摘Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials.This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years.The emergence of new raw material,the advancement of perparation methods and manufacturing techniques,and the potential applications of permanent ferrite materials are introduced and discussed.Specifically,nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources,and therefore it could be a promising development trendency.
基金financially supported by the National Natural Science Foundation of China(Nos.U23A20540,52371127)the Science and Technology Innovation Program of Hunan Province,China(No.2022RC3035)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2024ZZTS0077)。
文摘Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases in titanium alloys.By summarizing the recent investigations,the phase transformation processes corresponding to the common phases and also some less reported phases are reviewed.For the phase transformation only involvingαandβphases,it can be divided intoβ→αtransformation and a reverse transformation.The former one has been demonstrated from the orientation relationship betweenαandβphases and the regulation ofαmorphology.For the latter transformation,the role of the stress has been discussed.In terms of the metastable phases,the mechanisms of phase formation and their effects on microstructure and mechanical properties have been discussed.Finally,some suggestions about the development of titanium alloys have been proposed.
文摘This study investigates the differences in pragmatic competence between Hong Kong and Chinese mainland university students.Participants included 19 native speakers of English,115 Chinese mainland students,divided into those who had spent time abroad in an English-speaking country(CM A)and those who had not(CM NA),and 97 Hong Kong students,divided into those from an English-medium secondary school(Hong Kong EMI)and those from a Chinese-medium school(Hong Kong CMI).Linguistic proficiency was measured by a C-test,and pragmatic competence by a Metapragmatic Knowledge Test,an Irony Test and a Monologic Role Play.Group scores were compared using ANCOVAs to control for differences in proficiency.The results point to a continuum of pragmatic competence—EMI>CMI>CM A>CM NA—reflecting the groups’access to English in real-life contexts.The differences between the Hong Kong groups and the Chinese mainland groups were clearest in those tests measuring processing capacity(i.e.,Irony Response Time and the Monologic Role Play).CM A,but not CM NA,performed as well as the Hong Kong groups on measures of metapragmatic awareness.The results are discussed in terms of Bialystok’s(1993)distinction between analyzed representation and control of processing.
文摘A dye-sensitized photocatalyst combining Pt-loaded TiO_(2) and Ru(Ⅱ)tris-diimine sensitizer(RuP)was constructed and its activity for photochemical hydrogen evolution was compared with that of Pt-intercalated HCa_(2)Nb_(3)O_(10) nanosheets.When the sacrificial donor ethylenediaminetetraacetic acid(EDTA)disodium salt dihydrate was used,RuP/Pt/TiO_(2) showed higher activity than RuP/Pt/HCa_(2)Nb_(3)O_(10).In contrast,when NaI(a reversible electron donor)was used,RuP/Pt/TiO_(2) showed little activity due to back electron transfer to the electron acceptor(I_(3)-),which was gener-ated as the oxidation product of I-.By modification with anionic polymers(sodium poly(styrenesulfonate)or sodium polymethacrylate)that could inhibit the scavenging of conduction band electrons by I_(3)-,the H_(2) production activity from aqueous NaI was improved,but it did not exceed that of RuP/Pt/HCa_(2)Nb_(3)O_(10).Transient absorption measurements showed that the rate of semiconductor-to-dye back electron transfer was slower in the case of TiO_(2) than HCa_(2)Nb_(3)O_(10),but the electron transfer reaction to I3-was much faster.These results indicate that Pt/TiO_(2) is useful for reactions with sacrificial reductants(e.g.,EDTA),where the back electron transfer reaction to the more reducible product can be neglected.However,more careful design of the catalyst will be nec-essary when a reversible electron donor is employed.
文摘Glued timber structure is one of the main forms of modern wood architecture,which has gradually developed towards mid-and high-rise buildings.Glue-laminated timber(GLT)is comprised of several laminates of parallel-to-grain dimension lumber that are bonded together with durable,moisture resistant structural adhesives.GLT can be used in horizontal applications as a beam and in vertical applications as a post.So,its compressive performance has a significant impact on structural safety.Fiber reinforced polymers(FRPs)were commonly used to improve the bearing capacity of GLT components,and the structural and process parameters largely determined the reinforcement effect.This study was aimed at investigating the influence of structural and process parameters on the axial compression performance of GLT components.Three wrapping methods(middle-part,end-part and full wrapping)and three lengths(0.6,0.8,and 1.0 m)of wood post specimens were designed in this work and the axial compression performance and ductility of GLT post specimens modified by basalt fiber reinforced polymer(BFRP)were studied.The results showed that the effect of different BFRP wrapping methods on the compressive strength and elastic modulus of laminated wood was not statistically significant(P>0.05).The compressive bearing capacity of unreinforced GLT posts decreased with the increase of aspect ratio.The GLT posts with middle-part and end-part wrapping still followed this pattern,while the compressive bearing capacity of GLT posts with full wrapping showed a pattern of first decreasing and then increasing.For GLT with low aspect ratios(4.0 or 5.3),there was no correlation between the wrapping method and the compressive bearing capacity,while the compressive bearing capacity of GLT with a high aspect ratio(6.7)for middle-part,end-part and full wrapping increased by 3.5%,7.5%and 9.7%,respectively.Compared to the unreinforced group,the ultimate axial compressive strength and modulus of elasticity(MOE)of the 6-E series specimens reinforced at both ends decreased by 2.58%and 6.70%,respectively.The ultimate axial compressive strength of the 8-E specimens reinforced at both ends increased by 8.62%and the MOE decreased by 1.91%.The compressive strength of the 10-E specimens reinforced at both ends increased by 7.51%and the MOE increased by 8.14%.The failure modes of GLT with different aspects were consistent under the same BFRP wrapping,while the failure modes of GLT with the same aspect ratio were different for different BFRP wrapping methods.The ductility performance of GLT with different aspects ratio was improved by the BFRP wrapping.
基金financially supported by the National Natural Science Foundation of China(No.52201099)the Scientific Research Starting Foundation of Anhui Polytechnic University,China(No.S022021004)+2 种基金Undergraduate Scientific Research Project of Anhui Polytechnic University,ChinaSchool Level Scientific Research Project of Anhui Polytechnic University,China(No.Xjky2022028)the Open Research Fund of Anhui Key Laboratory of High-Performance Non-ferrous Metal Materials,China(No.YSJS-2023-1)。
文摘The recrystallization behavior,grain boundary characteristic distribution,and mechanical properties of pure Cu sheets that were subjected to different cold rolling paths,and then annealed at 400°C for 10,30,60,and 420 min,were investigated.Different rolling paths changed the grain boundary orientations of cold-rolled copper,causing recrystallized grains to nucleate and grow in an oriented manner.However,the evolution of the texture indicated that cold-rolled copper with different rolling paths did not show an obvious preferred orientation after annealing.The RD-60 specimen exhibited the smallest grain size(6.6μm).The results indicated that the grain size and low-ΣCSL grain boundaries worked together to provide RD-60 samples with appropriate mechanical properties and high plasticity.The yield strength,ultimate tensile strength,and elongation of RD-60 sample were 81 MPa,230 MPa,and 49%,respectively.These results could provide guidance for tuning the microstructures and properties of pure Cu foils,as well as designing fabrication routes for pure Cu foils through processes such as rolling and drawing.