Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in th...Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance.展开更多
目的研究治疗帕金森病的中药复方芍地帕宁的化学组成及成分归属,以阐明其物质基础。方法超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法(Ultra High Performance Liquid Chromatography/Quadrupole-Orbitrap Mass Spectrometer,UHPLC/...目的研究治疗帕金森病的中药复方芍地帕宁的化学组成及成分归属,以阐明其物质基础。方法超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法(Ultra High Performance Liquid Chromatography/Quadrupole-Orbitrap Mass Spectrometer,UHPLC/Q-OrbitrapMS),色谱柱ACQUITY UPLC HSS T3 column(2.1mm×100mm,1.8μm,Waters),流动相0.1%甲酸水(A)和乙腈(B),梯度洗脱(0~25min,5%~18%B;25~30min,18%~26%B;30~40min,26%~57%B;40~45min,57%~95%B;45~50min,95%B),流速0.2mL/min,柱温30°C,进样量2μL;采用电喷雾离子源,分别于正、负离子模式下采集质谱数据;通过与对照品比对,以及色谱峰的MS、MS/MS谱图解析,对芍地帕宁方中化学成分进行结构鉴定。结果共从芍地帕宁方中鉴别84个化合物,包括17个苯乙醇,10个单萜糖苷,13个游离酚,10个环烯醚萜,10个生物碱,7个硫酸酯,5个有机酸,4个酚类糖苷,4个氨基酸,4个核苷酸。通过与单味药进行比对,其中13个化合物来自熟地黄、11个来自白芍、16个来自鸡血藤、16个来自地龙、16个来自肉苁蓉、12个来自枸杞。结论芍地帕宁方化学成分结构复杂多样,建立的UHPLC/Q-Orbitrap MS方法可系统、全面地阐明该方的化学组成,可为后续质量评价体系建立、活性药效成分筛选及作用机理阐释等研究奠定基础。展开更多
As a typical secondary air pollutant,surface ozone has been monitored routinely since 2013 in China.Most studies on the spatiotemporal variation of ozone have been centered around the daily maximum 8-h average,with li...As a typical secondary air pollutant,surface ozone has been monitored routinely since 2013 in China.Most studies on the spatiotemporal variation of ozone have been centered around the daily maximum 8-h average,with little attention paid to the trends of hourly ozone,especially hourly ozone exceedances.Focusing on hourly ozone exceedances and peak values,the spatiotemporal trends of hourly ozone at 77 sites in 13 cities of the Beijing-Tianjin-Hebei(BTH)region during 2017-2021 were analyzed in this study.The number of hours with exceedances(N_(H200))in 2019 was nearly three times that of 2021.On a five-year average,the percentage of cumulative NH200 in June accounted for up to 40.5%of all hourly exceedances.Cities in central Hebei Province had the highest cumulative annual N_(H200).June had the highest average hourly ozone exceeded multiples of 0.158.The top two cities with the highest average exceeded multiple were Tangshan(0.166)and Beijing(0.158).Tangshan and Xingtai ranked as the top two in terms of the mean of the 10 highest daily maximum ozone concentrations(MTDM),with 286.74 and 285.37μg m^(−3),respectively.The gap between the MTDM and the daily maximum of hourly ozone averaged over all sites had narrowed to 97.88μg m^(−3) in 2021,much lower than that in other years,which indicated that the stability and convergence of ozone pollution in BTH region had been enhanced in 2021 to some extent.展开更多
The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Pl...The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Plateau(TP).This paper summarizes the scientific achievements obtained from the data collected by the INVC observation network and highlights the progress in investigating the development of heavy rainfall events associated with water vapor changes.The rain gauge network of the INVC can represent the impacts of the Yarlung Zsangbo Grand Canyon(YGC)topography on precipitation at the hourly scale.The microphysical characteristics of the precipitation in the YGC are different than those in the lowland area.The GPM-IMERG(Integrated MultisatellitE Retrievals for Global Precipitation Measurement)satellite precipitation data for the YGC region should be calibrated before they are used.The meridional water vapor flux through the YGC is more important than the zonal flux for the precipitation over the southeastern TP.The decreased precipitation around the YGC region is partly due to the decreased meridional water vapor flux passing through the YGC.High-resolution numerical models can benefit precipitation forecasting in this region by using a combination of specific schemes that capture the valley wind and water vapor flux along the valley floor.展开更多
The distinctive conditions present on the north and south slopes of Mount Qomolangma,along with the intricate variations in the underlying surfaces,result in notable variations in the surface energy flux patterns of t...The distinctive conditions present on the north and south slopes of Mount Qomolangma,along with the intricate variations in the underlying surfaces,result in notable variations in the surface energy flux patterns of the two slopes.In this paper,data from TESEBS(Topographical Enhanced Surface Energy Balance System),remote sensing data from eight cloud-free scenarios,and observational data from nine stations are utilized to examine the fluctuations in the surface heat flux on both slopes.The inclusion of MCD43A3 satellite data enhances the surface albedo,contributing to more accurate simulation outcomes.The model results are validated using observational data.The RMSEs of the net radiation,ground heat,sensible heat,and latent heat flux are 40.73,17.09,33.26,and 30.91 W m^(−2),respectively.The net radiation flux is greater on the south slope and exhibits a rapid decline from summer to autumn.Due to the influence of the monsoon,on the north slope,the maximum sensible heat flux occurs in the pre-monsoon period in summer and the maximum latent heat flux occurs during the monsoon.The south slope experiences the highest latent heat flux in summer.The dominant flux on the north slope is sensible heat,while it is latent heat on the south slope.The seasonal variations in the ground heat flux are more pronounced on the south slope than on the north slope.Except in summer,the ground heat flux on the north slope surpasses that on the south slope.展开更多
Meteorological conditions are vital to PM_(2.5)and ozone(O_(3))complex pollution.Herein,the T-mode principal com-ponent analysis method was employed to objectively classify the 925-hPa geopotential height field of Don...Meteorological conditions are vital to PM_(2.5)and ozone(O_(3))complex pollution.Herein,the T-mode principal com-ponent analysis method was employed to objectively classify the 925-hPa geopotential height field of Dongying from 2017 to 2022.Synoptic patterns associated with four pollution types-namely,PM_(2.5)-only pollution,O_(3)-only pollution,Co-occurring of PM_(2.5)and O_(3)pollution,Non-occurring of PM_(2.5)and O_(3)pollution-were characterized at different time scales.The results indicated that synoptic classes conducive to PM_(2.5)-only pollution were“high-pressure top front”,“offshore high-pressure rear”,and“high-pressure inside”,while those conducive to O_(3)-only pollution were“offshore high-pressure rear”,“subtropical high”,and“high and low systems”.The Co-occurring of PM_(2.5)and O_(3)pollution were influenced by high pressure,and the Non-occurring of PM_(2.5)and O_(3)pollution were linked to precipitation and strong northerly winds.The variation in dominant synoptic patterns is crucial in the frequency changes of the four pollution types,which was further validated through the analysis of typical cases.Under the favorable meteorological conditions of high-pressure control with strong northerly winds or a subtropical high and inverted trough both with strong precipitation,there is potential to achieve coordinated control of PM_(2.5)and O_(3)in Dongying.Additionally,measures like artificially manipulating local humidity could be adopted to alleviate pollution levels.This study reveals the importance of comprehending the meteorological factors contributing to the formation of PM_(2.5)and O_(3)complex pollution for the improvement of urban air quality in the Bohai Rim region of China when emissions are high and the concentration of air pollutants exhibits high meteorological sensitivity.展开更多
A wide range of terrain features and landforms,which are exemplified by intricate geological formations and diverse rock compositions,are found in the western mountainous regions of China.These areas frequently encoun...A wide range of terrain features and landforms,which are exemplified by intricate geological formations and diverse rock compositions,are found in the western mountainous regions of China.These areas frequently encounter geological disasters.As one of the natural disasters,landslides lead to considerable loss of human life and property.Considering mitigation of the losses caused by landslide disasters,a necessary measure for disaster prevention and mitigation involves conducting detailed investigations and monitoring of landslides,which is also the cornerstone of landslide warning.This study compares and analyzes the feasibility of the magnetotelluric detection method for landslides using the results of engineering geological surveys and landslide monitoring.The study aims to address the scientific problem of the validity of using magnetotelluric methods to detect landslide development processes.The Tangjiawan landslide signal on the left side of the K94+000~K94+145 section of the Wenma Expressway is analyzed by employing engineering geological survey,magnetotelluric detection,landslide monitoring,landslide analysis,and other methods.Analysis results provide the static electrical characteristics of lithology,structure,and groundwater,as well as the dynamic electrical characteristics of landslide development.This study focuses on analyzing the relationship between the methods of magnetotelluric detection and engineering geological surveys and the results of landslide monitoring.The workflow and methods for data collection,processing,inversion,interpretation,and analysis using the magnetotelluric method to detect the dynamic development process of landslides are presented in the conclusion.Preliminary conclusions indicate a strong correlation between the dynamic changes in magnetotelluric wave impedance with the surface displacement of landslides and the dynamic changes in groundwater.The use of the magnetotelluric method for landslide detection and monitoring is a feasible example.The research results can offer certain technical references for the detection and monitoring of landslides using magnetotelluric methods and also provide references and guidance for the selection of diversified landslide monitoring methods in the future.展开更多
Araneiforms are spider-like ground patterns that are widespread in the southern polar regions of Mars.A gas erosion process driven by the seasonal sublimation of CO_(2) ice was proposed as an explanation for their for...Araneiforms are spider-like ground patterns that are widespread in the southern polar regions of Mars.A gas erosion process driven by the seasonal sublimation of CO_(2) ice was proposed as an explanation for their formation,which cannot occur on Earth due to the high climatic temperature.In this study,we propose an alternative mechanism that attrib-utes the araneiform formation to the erosion of upwelling salt water from the subsurface,relying on the identification of the first terrestrial analog found in a playa of the Qaidam Basin on the northern Tibetan Plateau.Morphological analysis indicates that the structures in the Qaidam Basin have fractal features comparable to araneiforms on Mars.A numerical model is developed to investigate the araneiform formation driven by the water-diffusion mechanism.The simulation res-ults indicate that the water-diffusion process,under varying ground conditions,may be responsible for the diverse aranei-form morphologies observed on both Earth and Mars.Our numerical simulations also demonstrate that the orientations of the saltwater diffusion networks are controlled by pre-existing polygonal cracks,which is consistent with observations of araneiforms on Mars and Earth.Our study thus suggests that a saltwater-related origin of the araneiform is possible and has significant implications for water searches on Mars.展开更多
The observation of geomagnetic field variations is an important approach to studying earthquake precursors.Since 1987,the China Earthquake Administration has explored this seismomagnetic relationship.In particular,the...The observation of geomagnetic field variations is an important approach to studying earthquake precursors.Since 1987,the China Earthquake Administration has explored this seismomagnetic relationship.In particular,they studied local magnetic field anomalies over the Chinese mainland for earthquake prediction.Owing to the years of research on the seismomagnetic relationship,earthquake prediction experts have concluded that the compressive magnetic effect,tectonic magnetic effect,electric magnetic fluid effect,and other factors contribute to preearthquake magnetic anomalies.However,this involves a small magnitude of magnetic field changes.It is difficult to relate them to the abnormal changes of the extremely large magnetic field in regions with extreme earthquakes owing to the high cost of professional geomagnetic equipment,thereby limiting large-scale deployment.Moreover,it is difficult to obtain strong magnetic field changes before an earthquake.The Tianjin Earthquake Agency has developed low-cost geomagnetic field observation equipment through the Beijing–Tianjin–Hebei geomagnetic equipment test project.The new system was used to test the availability of equipment and determine the findings based on big data..展开更多
Loess soils are widely distributed worldwide and typical in northwest China,and excessive agricultural irrigation has caused landslides in the area,specifi cally in the Heifangtai loess region in Lanzhou,Gansu,China.G...Loess soils are widely distributed worldwide and typical in northwest China,and excessive agricultural irrigation has caused landslides in the area,specifi cally in the Heifangtai loess region in Lanzhou,Gansu,China.Geophysical exploration is an essential method in landslide engineering geological surveys,and geological surveying,drilling,geophysical prospecting,monitoring,and other methods are used for performing engineering geological evaluation and obtaining comprehensive basic data for landslide protection design and construction.The theoretical feasibility of using geophysical methods in loess landslide detection is essential.On the basis of the shallow geological structure of the Heifangtai landslide region in Lanzhou,Gansu,China,a typical geoelectric model of the magnetotelluric method was established,and the loess landslide area was modeled through a two-dimensional fi nite element method,forward numerical simulation,and engineering geological analysis.The distribution characteristics of the magnetotelluric field were determined.This is a typical application of the geological process analysis method in geophysical exploration.This study provides the typical stratigraphic structure and electrical characteristics of different groundwater distributions in Heifangtai,Gansu,China,verifi es the accuracy of forward modeling and calculation results,and provides a detailed theoretical basis for landslide detection through magnetotelluric methods.Through the numerical simulation of the forward modeling of the Heifangtai landslide region in Lanzhou,Gansu,China,this study can provide a detailed geophysical basis for landslide investigation,corroborate results of geological investigation and landslide design,and facilitate the sustainable development of agriculture in Heifangtai.展开更多
Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this wo...Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this work,the development potentials of the PHS and geothermal utilization systems were evaluated.Considering the geological conditions and meteorological data available of Jiahe abandoned mine,a simple evaluation model for PHS and geothermal utilization was established.The average efficiency of the PHS system exceeds 70%and the regulatable energy of a unit volume is over 1.53 kW·h/m^(3).The PHS system achieves optimal performance when the wind/solar power ratio reaches 0.6 and 0.3 in daily and year scale,respectively.In the geothermal utilization system,the outlet temperature and heat production are significantly affected by the injection flow rate.The heat production performance is more stable at lower rate flow,and the proportion of heat production is higher in the initial stage at greater flow rate.As the operating time increases,the proportion of heat production gradually decreases.The cyclic heat storage status has obvious advantages in heat generation and cooling.Furthermore,the energy-saving and emission reduction benefits of PHS and geothermal utilization systems were calculated.展开更多
基金supported by the National Natural Science Foundation of China [grant numbers 42088101 and 42375048]。
文摘Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance.
文摘目的研究治疗帕金森病的中药复方芍地帕宁的化学组成及成分归属,以阐明其物质基础。方法超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法(Ultra High Performance Liquid Chromatography/Quadrupole-Orbitrap Mass Spectrometer,UHPLC/Q-OrbitrapMS),色谱柱ACQUITY UPLC HSS T3 column(2.1mm×100mm,1.8μm,Waters),流动相0.1%甲酸水(A)和乙腈(B),梯度洗脱(0~25min,5%~18%B;25~30min,18%~26%B;30~40min,26%~57%B;40~45min,57%~95%B;45~50min,95%B),流速0.2mL/min,柱温30°C,进样量2μL;采用电喷雾离子源,分别于正、负离子模式下采集质谱数据;通过与对照品比对,以及色谱峰的MS、MS/MS谱图解析,对芍地帕宁方中化学成分进行结构鉴定。结果共从芍地帕宁方中鉴别84个化合物,包括17个苯乙醇,10个单萜糖苷,13个游离酚,10个环烯醚萜,10个生物碱,7个硫酸酯,5个有机酸,4个酚类糖苷,4个氨基酸,4个核苷酸。通过与单味药进行比对,其中13个化合物来自熟地黄、11个来自白芍、16个来自鸡血藤、16个来自地龙、16个来自肉苁蓉、12个来自枸杞。结论芍地帕宁方化学成分结构复杂多样,建立的UHPLC/Q-Orbitrap MS方法可系统、全面地阐明该方的化学组成,可为后续质量评价体系建立、活性药效成分筛选及作用机理阐释等研究奠定基础。
基金supported by the National Key Research and Development Program of China[grant number 2022YFC3700705]。
文摘As a typical secondary air pollutant,surface ozone has been monitored routinely since 2013 in China.Most studies on the spatiotemporal variation of ozone have been centered around the daily maximum 8-h average,with little attention paid to the trends of hourly ozone,especially hourly ozone exceedances.Focusing on hourly ozone exceedances and peak values,the spatiotemporal trends of hourly ozone at 77 sites in 13 cities of the Beijing-Tianjin-Hebei(BTH)region during 2017-2021 were analyzed in this study.The number of hours with exceedances(N_(H200))in 2019 was nearly three times that of 2021.On a five-year average,the percentage of cumulative NH200 in June accounted for up to 40.5%of all hourly exceedances.Cities in central Hebei Province had the highest cumulative annual N_(H200).June had the highest average hourly ozone exceeded multiples of 0.158.The top two cities with the highest average exceeded multiple were Tangshan(0.166)and Beijing(0.158).Tangshan and Xingtai ranked as the top two in terms of the mean of the 10 highest daily maximum ozone concentrations(MTDM),with 286.74 and 285.37μg m^(−3),respectively.The gap between the MTDM and the daily maximum of hourly ozone averaged over all sites had narrowed to 97.88μg m^(−3) in 2021,much lower than that in other years,which indicated that the stability and convergence of ozone pollution in BTH region had been enhanced in 2021 to some extent.
基金funded by the Second Tibetan Plateau Scientific Expedition and Research Program[grant numbers 2019QZKK0105 and 2019QZKK0103]the National Natural Science Foundation of China[grant number 41975009].
文摘The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the“Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon(INVC)”in the southeastern Tibetan Plateau(TP).This paper summarizes the scientific achievements obtained from the data collected by the INVC observation network and highlights the progress in investigating the development of heavy rainfall events associated with water vapor changes.The rain gauge network of the INVC can represent the impacts of the Yarlung Zsangbo Grand Canyon(YGC)topography on precipitation at the hourly scale.The microphysical characteristics of the precipitation in the YGC are different than those in the lowland area.The GPM-IMERG(Integrated MultisatellitE Retrievals for Global Precipitation Measurement)satellite precipitation data for the YGC region should be calibrated before they are used.The meridional water vapor flux through the YGC is more important than the zonal flux for the precipitation over the southeastern TP.The decreased precipitation around the YGC region is partly due to the decreased meridional water vapor flux passing through the YGC.High-resolution numerical models can benefit precipitation forecasting in this region by using a combination of specific schemes that capture the valley wind and water vapor flux along the valley floor.
基金financially supported by the National Natural Science Foundation of China[grant number 42230610]the Second Tibetan Plateau Scientific Expedition and Research(STEP)program[grant number 2019QZKK0103]+1 种基金the Natural Science Foundation of Sichuan Province[grant number 2022NSFSC0217]the Scientific Research Project of Chengdu University of Information Technology[grant number KYTZ201721].
文摘The distinctive conditions present on the north and south slopes of Mount Qomolangma,along with the intricate variations in the underlying surfaces,result in notable variations in the surface energy flux patterns of the two slopes.In this paper,data from TESEBS(Topographical Enhanced Surface Energy Balance System),remote sensing data from eight cloud-free scenarios,and observational data from nine stations are utilized to examine the fluctuations in the surface heat flux on both slopes.The inclusion of MCD43A3 satellite data enhances the surface albedo,contributing to more accurate simulation outcomes.The model results are validated using observational data.The RMSEs of the net radiation,ground heat,sensible heat,and latent heat flux are 40.73,17.09,33.26,and 30.91 W m^(−2),respectively.The net radiation flux is greater on the south slope and exhibits a rapid decline from summer to autumn.Due to the influence of the monsoon,on the north slope,the maximum sensible heat flux occurs in the pre-monsoon period in summer and the maximum latent heat flux occurs during the monsoon.The south slope experiences the highest latent heat flux in summer.The dominant flux on the north slope is sensible heat,while it is latent heat on the south slope.The seasonal variations in the ground heat flux are more pronounced on the south slope than on the north slope.Except in summer,the ground heat flux on the north slope surpasses that on the south slope.
基金jointly supported by the Ministry of Ecology and Environment of the People’s Republic of China[grant number DQGG202121]the Dongying Ecological and Environmental Bureau[grant number 2021DFKY-0779]。
文摘Meteorological conditions are vital to PM_(2.5)and ozone(O_(3))complex pollution.Herein,the T-mode principal com-ponent analysis method was employed to objectively classify the 925-hPa geopotential height field of Dongying from 2017 to 2022.Synoptic patterns associated with four pollution types-namely,PM_(2.5)-only pollution,O_(3)-only pollution,Co-occurring of PM_(2.5)and O_(3)pollution,Non-occurring of PM_(2.5)and O_(3)pollution-were characterized at different time scales.The results indicated that synoptic classes conducive to PM_(2.5)-only pollution were“high-pressure top front”,“offshore high-pressure rear”,and“high-pressure inside”,while those conducive to O_(3)-only pollution were“offshore high-pressure rear”,“subtropical high”,and“high and low systems”.The Co-occurring of PM_(2.5)and O_(3)pollution were influenced by high pressure,and the Non-occurring of PM_(2.5)and O_(3)pollution were linked to precipitation and strong northerly winds.The variation in dominant synoptic patterns is crucial in the frequency changes of the four pollution types,which was further validated through the analysis of typical cases.Under the favorable meteorological conditions of high-pressure control with strong northerly winds or a subtropical high and inverted trough both with strong precipitation,there is potential to achieve coordinated control of PM_(2.5)and O_(3)in Dongying.Additionally,measures like artificially manipulating local humidity could be adopted to alleviate pollution levels.This study reveals the importance of comprehending the meteorological factors contributing to the formation of PM_(2.5)and O_(3)complex pollution for the improvement of urban air quality in the Bohai Rim region of China when emissions are high and the concentration of air pollutants exhibits high meteorological sensitivity.
基金supported by the Construction S&T Project of Department of Transportation of Sichuan Province(Grant No.2023A02,No.2024A04,No.2020A01)the Sichuan Science and Technology Program(Grant No.2022YFG0141)+3 种基金the Research Project of Sichuan Highway Planning,Survey,Design,and Research Institute Ltd.(Grant No.KYXM2021000049,No.KYXM2022000038,No.KYXM2023000056)the National Natural Science Foundation of China(41630640)the National Science Foundation of Innovation Research Group(41521002)the National Natural Science Foundation of China(41790445).
文摘A wide range of terrain features and landforms,which are exemplified by intricate geological formations and diverse rock compositions,are found in the western mountainous regions of China.These areas frequently encounter geological disasters.As one of the natural disasters,landslides lead to considerable loss of human life and property.Considering mitigation of the losses caused by landslide disasters,a necessary measure for disaster prevention and mitigation involves conducting detailed investigations and monitoring of landslides,which is also the cornerstone of landslide warning.This study compares and analyzes the feasibility of the magnetotelluric detection method for landslides using the results of engineering geological surveys and landslide monitoring.The study aims to address the scientific problem of the validity of using magnetotelluric methods to detect landslide development processes.The Tangjiawan landslide signal on the left side of the K94+000~K94+145 section of the Wenma Expressway is analyzed by employing engineering geological survey,magnetotelluric detection,landslide monitoring,landslide analysis,and other methods.Analysis results provide the static electrical characteristics of lithology,structure,and groundwater,as well as the dynamic electrical characteristics of landslide development.This study focuses on analyzing the relationship between the methods of magnetotelluric detection and engineering geological surveys and the results of landslide monitoring.The workflow and methods for data collection,processing,inversion,interpretation,and analysis using the magnetotelluric method to detect the dynamic development process of landslides are presented in the conclusion.Preliminary conclusions indicate a strong correlation between the dynamic changes in magnetotelluric wave impedance with the surface displacement of landslides and the dynamic changes in groundwater.The use of the magnetotelluric method for landslide detection and monitoring is a feasible example.The research results can offer certain technical references for the detection and monitoring of landslides using magnetotelluric methods and also provide references and guidance for the selection of diversified landslide monitoring methods in the future.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB41000000)the Fundamental Research Funds for the Central Universities(WK2080000144)。
文摘Araneiforms are spider-like ground patterns that are widespread in the southern polar regions of Mars.A gas erosion process driven by the seasonal sublimation of CO_(2) ice was proposed as an explanation for their formation,which cannot occur on Earth due to the high climatic temperature.In this study,we propose an alternative mechanism that attrib-utes the araneiform formation to the erosion of upwelling salt water from the subsurface,relying on the identification of the first terrestrial analog found in a playa of the Qaidam Basin on the northern Tibetan Plateau.Morphological analysis indicates that the structures in the Qaidam Basin have fractal features comparable to araneiforms on Mars.A numerical model is developed to investigate the araneiform formation driven by the water-diffusion mechanism.The simulation res-ults indicate that the water-diffusion process,under varying ground conditions,may be responsible for the diverse aranei-form morphologies observed on both Earth and Mars.Our numerical simulations also demonstrate that the orientations of the saltwater diffusion networks are controlled by pre-existing polygonal cracks,which is consistent with observations of araneiforms on Mars and Earth.Our study thus suggests that a saltwater-related origin of the araneiform is possible and has significant implications for water searches on Mars.
基金supported by the Spark Program of Earthquake Science and Technology(No.XH23003C).
文摘The observation of geomagnetic field variations is an important approach to studying earthquake precursors.Since 1987,the China Earthquake Administration has explored this seismomagnetic relationship.In particular,they studied local magnetic field anomalies over the Chinese mainland for earthquake prediction.Owing to the years of research on the seismomagnetic relationship,earthquake prediction experts have concluded that the compressive magnetic effect,tectonic magnetic effect,electric magnetic fluid effect,and other factors contribute to preearthquake magnetic anomalies.However,this involves a small magnitude of magnetic field changes.It is difficult to relate them to the abnormal changes of the extremely large magnetic field in regions with extreme earthquakes owing to the high cost of professional geomagnetic equipment,thereby limiting large-scale deployment.Moreover,it is difficult to obtain strong magnetic field changes before an earthquake.The Tianjin Earthquake Agency has developed low-cost geomagnetic field observation equipment through the Beijing–Tianjin–Hebei geomagnetic equipment test project.The new system was used to test the availability of equipment and determine the findings based on big data..
文摘Loess soils are widely distributed worldwide and typical in northwest China,and excessive agricultural irrigation has caused landslides in the area,specifi cally in the Heifangtai loess region in Lanzhou,Gansu,China.Geophysical exploration is an essential method in landslide engineering geological surveys,and geological surveying,drilling,geophysical prospecting,monitoring,and other methods are used for performing engineering geological evaluation and obtaining comprehensive basic data for landslide protection design and construction.The theoretical feasibility of using geophysical methods in loess landslide detection is essential.On the basis of the shallow geological structure of the Heifangtai landslide region in Lanzhou,Gansu,China,a typical geoelectric model of the magnetotelluric method was established,and the loess landslide area was modeled through a two-dimensional fi nite element method,forward numerical simulation,and engineering geological analysis.The distribution characteristics of the magnetotelluric field were determined.This is a typical application of the geological process analysis method in geophysical exploration.This study provides the typical stratigraphic structure and electrical characteristics of different groundwater distributions in Heifangtai,Gansu,China,verifi es the accuracy of forward modeling and calculation results,and provides a detailed theoretical basis for landslide detection through magnetotelluric methods.Through the numerical simulation of the forward modeling of the Heifangtai landslide region in Lanzhou,Gansu,China,this study can provide a detailed geophysical basis for landslide investigation,corroborate results of geological investigation and landslide design,and facilitate the sustainable development of agriculture in Heifangtai.
基金Project(8212033)supported by the Natural Science Foundation of Beijing,ChinaProject(BBJ2023051)supported by the Fundamental Research Funds of China University of Mining and Technology-BeijingProject(SKLGDUEK202221)supported by the Innovation Fund Research Project,China。
文摘Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this work,the development potentials of the PHS and geothermal utilization systems were evaluated.Considering the geological conditions and meteorological data available of Jiahe abandoned mine,a simple evaluation model for PHS and geothermal utilization was established.The average efficiency of the PHS system exceeds 70%and the regulatable energy of a unit volume is over 1.53 kW·h/m^(3).The PHS system achieves optimal performance when the wind/solar power ratio reaches 0.6 and 0.3 in daily and year scale,respectively.In the geothermal utilization system,the outlet temperature and heat production are significantly affected by the injection flow rate.The heat production performance is more stable at lower rate flow,and the proportion of heat production is higher in the initial stage at greater flow rate.As the operating time increases,the proportion of heat production gradually decreases.The cyclic heat storage status has obvious advantages in heat generation and cooling.Furthermore,the energy-saving and emission reduction benefits of PHS and geothermal utilization systems were calculated.