Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki...Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.展开更多
In this paper, we discuss the relationship between k-semi-stratifiable spaces and quais-Nagata spaces and some mapping properties of quasi-Nagata spaces. We get following results: sequence-covering closed mapping pres...In this paper, we discuss the relationship between k-semi-stratifiable spaces and quais-Nagata spaces and some mapping properties of quasi-Nagata spaces. We get following results: sequence-covering closed mapping preserve quasi-Nagata spaces, and finite-to-one open mappings don't preserve quasi-Nagata spaces.展开更多
In this paper, we establish a common fixed pointtheorem for three pairs of self-mappings in fuzzy semi-metric space which improves and extends similar known results in the literature.
The effect of mesa size on th e thermal characteristics of etched mesa vertical-cavity surface-emitting lase rs(VCSELs) is studied. The numerical results show that the mesa size of the top mirror strongly influences t...The effect of mesa size on th e thermal characteristics of etched mesa vertical-cavity surface-emitting lase rs(VCSELs) is studied. The numerical results show that the mesa size of the top mirror strongly influences the temperature distribution inside the etched mesa V CSEL. Under a certain driving voltage, with decreasing mesa size, the location o f the maximal temperature moves towards the p-contact metal, the temperature in the core region of the active layer rises greatly, and the thermal characterist ics of the etched mesa VCSELs will deteriorate.展开更多
The traffic-induced vibrations of the new CCTV Headquarters building are studied stages. In the first stage when the through experiments in two 30th floor of the northwest tower and the 38th floor of the southeast tow...The traffic-induced vibrations of the new CCTV Headquarters building are studied stages. In the first stage when the through experiments in two 30th floor of the northwest tower and the 38th floor of the southeast tower were finished, the traffic flows on the roads surrounding the building were investigated, and 27 setups of accelerations were measured at the roadside, on the pile cap and on the 9th floor. In the second stage when the whole steel structure was completed, l 5 setups of accelerations were measured at the roadside, on the pile cap and on the 37th and the 48th floors. The accelerations of the building under different traffic flows, in different positions are analyzed in both time domain and frequency domain. The damping ratios are estimated by the upgraded half-power bandwidth method.展开更多
Modulation in the aggregation behavior of bio-surfactants (bile salts), sodium cholate (NaC) and sodium deoxycholate (NaDC) in aqueous solutions of carbohydrates (galactose and lactose) have been investigated ...Modulation in the aggregation behavior of bio-surfactants (bile salts), sodium cholate (NaC) and sodium deoxycholate (NaDC) in aqueous solutions of carbohydrates (galactose and lactose) have been investigated by measuring the density (ρ), speed of sound (u) and viscosity (η) of the mixtures at different temperatures 293.15, 298.15, 303.15, 308.15 and 313.15 K. The density and speed of sound data have been used to calculate various volumetric and compressibility parameters such as apparent molar volume (Vφ), isentropic compressibil- ity (κs), apparent molar adiabatic compression (κs,φ) to get a better insight into the micellization mechanism of bile salts. Further, the viscosity data have been studied in the light of relative viscosity (ηr) and viscous relaxation time (τ). Some derived parameters such as free volume (νf), internal pressure (πi) and molar cohesive energy (MCE) of NaC and NaDC in aqueous solution of saccharides have also been calculated from viscosity data in con- junction with density and speed of sound values. All the calculated and derived parameters provide qualitative information regarding the nature of interactions i.e. solute-solute, solute-solvent and solvent-solvent in the solution.展开更多
The interannual variability of the boreal winter Hadley circulation extents during the period of 1979e2014 and its links to El Ni^no-Southern Oscillation(ENSO) were investigated by using reanalysis datasets. Results s...The interannual variability of the boreal winter Hadley circulation extents during the period of 1979e2014 and its links to El Ni^no-Southern Oscillation(ENSO) were investigated by using reanalysis datasets. Results showed that the El Ni^no(La Ni^na) events can induce the shrinking(expansion) of Hadley circulation extent in the Southern Hemisphere. For the Northern Hemisphere, El Ni^no(La Ni^na) mainly leads to shrinking(expansion) of the Hadley circulation extent in the middle and lower troposphere and expansion(shrinking) of the Hadley circulation extent in the upper troposphere. The ENSO associated meridional temperature gradients have close relationship with the Hadley circulation extents in both Hemispheres. But in the Northern Hemisphere, the ENSO associated eddy momentum flux divergence plays more important role in affecting the Hadley circulation extent than the meridional temperature gradient because of the small local Rossby number. In the Southern Hemisphere, as the ENSO induced eddy momentum flux divergence is small, the meridional temperature gradient dominates the change of the Hadley circulation extent.展开更多
A novel system configuration of fiber optic sensor based on optical abso rption is proposed. Several compensation measures are discussed. A simulated exp eriment is designed and the output curve of system is given. Th...A novel system configuration of fiber optic sensor based on optical abso rption is proposed. Several compensation measures are discussed. A simulated exp eriment is designed and the output curve of system is given. The experiment al result shows that these compensation measures are effective on dynamic distu rbances which are caused by background light and optical fiber bend. In addition , the drifts in the light source intensity, fiber losses, and photodetector effi ciency are also compensated.展开更多
By using four-year CloudSat/CALIPSO satellite data,the authors investigated cloud microphysical properties in three representative regions over East Asia,where models commonly suffer from great biases in simulations o...By using four-year CloudSat/CALIPSO satellite data,the authors investigated cloud microphysical properties in three representative regions over East Asia,where models commonly suffer from great biases in simulations of cloud radiative effects.This study aims to provide an observational basis of cloud microphysical properties for the modeling community,against which the model simulations can be validated.The analyzed cloud microphysical properties include mass,number concentration,and effective radius for both liquid and ice phases.For liquid clouds,both cloud mass and number concentration gradually decrease with height,leading to the effective radius being nearly uniformly spread in the range of 8-14μm.For ice clouds,the cloud mass and effective radius decrease with height,whereas the number concentration is nearly uniform in the vertical.The cloud microphysical properties show remarkable differences among different cloud types.Cloud mass and number concentration are larger in cumuliform clouds,whereas smaller in cirrus clouds.By comparing cloud properties among the Tibetan Plateau,East China,and the western North Pacific,results show the values are overall smaller for liquid clouds but larger for ice clouds over the Tibetan Plateau.展开更多
Abstract: A micro - power consumption non - contact temperature measuring instrument for big rotor is introduced. As it solves very well the signal coupling under high speed rotation and power supply problem for probe...Abstract: A micro - power consumption non - contact temperature measuring instrument for big rotor is introduced. As it solves very well the signal coupling under high speed rotation and power supply problem for probe, the instrument can realize persistent on - line temperature measurement for big rotor drived by the ordinary light transmitted by optical fiber under the room light.展开更多
Using a Taylor series expansion for the Fermi-Dirac occupation function,an accurate analytical model is developed for calculating the trapped-charge density in a-Si: H considering deep and tail states simultaneously w...Using a Taylor series expansion for the Fermi-Dirac occupation function,an accurate analytical model is developed for calculating the trapped-charge density in a-Si: H considering deep and tail states simultaneously without simplification.This is followed by the investigation of the relative errors of the localized trapped charge density in a-Si:H at all temperatures as a function of the quasi-Fermi level in the band gap calculated from three published analytical models and our above model. The results suggest that the relative errors of all these models increase notably as Efn is very closed to Ec(e.g.,-0.01 eV< Efn-Ec).It is also noticed that the relative errors of all above models become larger normally the greater is the value of temperature.A detailed analysis indicates that each model has its own applicability with various temperatures and various positions of the Fermi level.展开更多
Spatial pattern and interdependence of different soil and plant parameters were examined in green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari (MAIB), Italy. The study aimed to ...Spatial pattern and interdependence of different soil and plant parameters were examined in green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari (MAIB), Italy. The study aimed to identify the spatial distribution of soil and plant parameters and their relationship at transects scale. The experiment consisted of three transects of 30 m length and 4.2 m width, irrigated with three different salinity levels (1 dSm"1, 3 dSm1, 6 dSml). Soil measurements (electrical conductivity and soil water content) were monitored along each transect in 24 sites, using TDR probe installed vertically at soil surface. Water storage was measured by using Diviner sensor for calculating directly the evapotranspiration fluxes along the whole soil profile under the different salinity levels imposed during the experiment. In the same 24 sites, crop monitoring involved measurements of Leaf Area Index (LAI), Osmotic Potential (OP), Root length Density (RID) and Evapotranspiration fluxes (ET). Soil and plant properties were analyzed using both classical and geostatistical methods which included descriptive statistics, semivariograms and cross-semivariograms. Results indicated that moderate to large spatial variability existed across the field for soil and plant parameters, especially under the 6 dSm1 salinity treatment. A relatively satisfactory fit of the experimental cross-semivariogram was obtained for the 6 dS1, thus indicating similar spatial structures of the pairs of compared variables. By contrast, the experimental cross-semivariograms observed under the 3 dS~ treatment indicated no significant correlation structure between the compared variables. Overall, the results observed in the 3 dSm-1 were not significantly different from those obtained in the 1 dSm-1 transect and suggested a general insensitivity of the crop response to those levels of salinity.展开更多
Conventional thermoacoustic engines have a stack pore radius that is almost constant in the axial direction. Hence, a thermoacoustic engine is expected to improve the energy conversion efficiency using a multistage st...Conventional thermoacoustic engines have a stack pore radius that is almost constant in the axial direction. Hence, a thermoacoustic engine is expected to improve the energy conversion efficiency using a multistage stack with multiple pore radii. The stack comprises several bundles of numerous narrow tubes with specified pore radii. The optimum pore radius of the stack is determined by the oscillation frequency and the temperature in the stack. Consequently, the suitable pore radius changes in the axial direction, because the temperature gradient exists along the stack axis. Therefore, a multistage stack with multiple pore radii is introduced, which achieves a desired optimum pore radius everywhere in the stack. The energy conversion efficiency of the multistage stack, which was studied experimentally for a straight-tube type thermoacoustic engine, was compared with that of a conventional single-stage stack. In these experiments, the improvement of the energy conversion efficiency was confirmed. A numerical method with the transmittance matrix to include the effect of a multistage stack was used, and good agreement between experimental and numerical results was obtained. The results make a future possibilities for stack design intended to higher thermoacoustic engine efficiency expect.展开更多
Rapid, accurate and sensitive detection of particular DNA sequence is critical in fundamental biomedical research and clinical diagnostics. However, conventional approaches for DNA assay often suffer from cumbersome p...Rapid, accurate and sensitive detection of particular DNA sequence is critical in fundamental biomedical research and clinical diagnostics. However, conventional approaches for DNA assay often suffer from cumbersome procedures, long analysis time and insufficient sensitivity. Recently, single-particle detection technology has emerged as a powerful tool in the biosensing area due to its significant advantages of ultrahigh sensitivity, low sample-consumption and rapid analysis time. Especially, the introduction of novel nanomaterials has greatly promoted the development of single-particle detection and its applications for DNA sensing. In this review, we summarize the recent advance in single-particle detection strategies for DNA sensing, and focus mainly on metallic nanoparticle-and semiconductor quantum dot-based single-particle detection. We highlight the emerging trends in this field as well.展开更多
To power large-scale energy storage systems,sodium-ion batteries(SIBs)must have not only high-energy density but also high performance under a low-temperature(LT)environment.P2-type manganese oxides with high specific...To power large-scale energy storage systems,sodium-ion batteries(SIBs)must have not only high-energy density but also high performance under a low-temperature(LT)environment.P2-type manganese oxides with high specific capacity are promising cathode candidates for SIBs,but their LT applications are limitedly explored.We proposed a P2-type Na_(0.67)Ni_(0.1)Co_(0.1)Mn_(0.8)O_(2) material with outstanding LT performance prepared through reasonable structure modulation.The material offers an excellent Na^(+) diffusion coefficient(approximately 10^(−9)-10^(−7.5) cm^(2) s^(−1))at−20℃,a superior LT discharge capacity of 147.4 mA h g^(−1) in the Na half-cell system,and outstanding LT full cell performance(energy density of 358.3 W h kg^(−1)).Various characterisations and density function theory calculations results show that the solid solution reaction and pseudocapacitive feature promote the diffusion and desolvation of Na+from the bulk electrode to interface,finally achieving superior electrochemical performance at LT.展开更多
The uneven deposition of lithium(Li) on current collectors causes serious dendrite growth and volume expansion. Commercial foamed copper(Cu) current collectors are unsuitable for Li anodes because of their large volum...The uneven deposition of lithium(Li) on current collectors causes serious dendrite growth and volume expansion. Commercial foamed copper(Cu) current collectors are unsuitable for Li anodes because of their large volume and mass and lithiophobic nature. Herein, a three-dimensional(3 D) copper@tin(Cu@Sn) nanocone current collector with small volume, light weight, and lithiophilic nature was prepared by a simple electrodeposition method. The synergy of the nanoconical structure and lithiophilic Sn promotes the even deposition of Li and effectively inhibits the formation of Li dendrites. The resultant half batteries exhibit high Coulombic efficiency of 97.6% after 100 cycles at 1 mA cm^(-2), and the symmetrical Li battery demonstrates a prolonged lifespan of over 600 h at 1 mA cm^(-2). The full battery based on organic liquid electrolyte with LiFePO_(4) also exhibits a long lifespan of 550 cycles with high capacity retention of 95.1% at 1 C.Moreover, 3 D Cu@Sn nanocone-based solid-state batteries exhibit excellent electrochemical performance and show no decay after 500 cycles at 1 C. Our work provides a strategy for fabricating 3 D current collectors for high-energy-density Li metal batteries.展开更多
The ecosystem apparent quantum yield(α),maximum rate of gross CO_(2) assimilation(Pmax)and daytime ecosystem respiration rate(R.),reflecting the physiological functioning of ecosystem,are vital photosynthetic paramet...The ecosystem apparent quantum yield(α),maximum rate of gross CO_(2) assimilation(Pmax)and daytime ecosystem respiration rate(R.),reflecting the physiological functioning of ecosystem,are vital photosynthetic parameters for the estimation of ecosystem carbon budget.Climatic drivers may affect photosynthetic parameters both directly and indirectly by altering the response of vegetation.However,the relative contribution and regulation pathway of environmental and physiological controls remain unclear,especially in semi-arid grasslands.We analyzed seasonal and interannual variations of photosynthetic parameters derived from eddy-covariance observation in a typical semi-arid grassland in Inner Mongolia,Northern China,over 12 years from 2006 to 2017.Regression analyses and a structural equation model(SEM)were adopted to separate the contributions of environmental and physiological effects.The photosynthetic parameters showed unimodal seasonal patterns and significantly interannual variations.Variations of air temperature(T,)and soil water content(SWC)drove the seasonal patterns of photosynthetic parameters,while SWC predominated their interannual variations.Moreover,contrasting with the predominant roles of T,onαand Ra,SWC explained more variance of Pmax than T,Results of SEM revealed that environmental factors impacted photosynthetic parameters both directly and indirectly through regulating physiological responses reflected by stomatal conductance at the canopy level.Moreover,leaf area index(LAl)directly affectedα,Pmax and R,and dominated the variation of Pmax.On the other hand,SWC influenced photosynthetic parameters indirectly through LAl and canopy surface conductance(gc).Our findings highlight the importance of physiological regulation on the photosynthetic parameters and carbon assimilation capacity,especially in water-limitedgrassland ecosystems.展开更多
In this article,the convergence of so-called Lax-Oleinik semigroup is studied for time-periodic Lagrangian systems when the degree of freedom is greater than 2.Under certain conditions,we show that the Lax-Oleinik sem...In this article,the convergence of so-called Lax-Oleinik semigroup is studied for time-periodic Lagrangian systems when the degree of freedom is greater than 2.Under certain conditions,we show that the Lax-Oleinik semigroup converges if the rotation vector is completely irrational.Removing such conditions,we will give another kind of convergence of the sequence Fc((x,s),(x′,s′+Tn)),the convergence of which is closely related to the Lax-Oleinik semigroup.展开更多
This paper considers the existence of global smooth solutions of semilinear schrSdinger equation with a boundary feedback on 2-dimensional Riemannian manifolds when initial data are small. The authors show that the ex...This paper considers the existence of global smooth solutions of semilinear schrSdinger equation with a boundary feedback on 2-dimensional Riemannian manifolds when initial data are small. The authors show that the existence of global solutions depends not only on the boundary feedback, but also on a Riemannian metric, given by the coefficient of the principle part and the original metric of the manifold. In particular, the authers prove that the energy of the system decays exponentially.展开更多
基金National Key Research and Development Program of China(Nos.2022YFB4700600 and 2022YFB4700605)National Natural Science Foundation of China(Nos.61771123 and 62171116)+1 种基金Fundamental Research Funds for the Central UniversitiesGraduate Student Innovation Fund of Donghua University,China(No.CUSF-DH-D-2022044)。
文摘Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.
文摘In this paper, we discuss the relationship between k-semi-stratifiable spaces and quais-Nagata spaces and some mapping properties of quasi-Nagata spaces. We get following results: sequence-covering closed mapping preserve quasi-Nagata spaces, and finite-to-one open mappings don't preserve quasi-Nagata spaces.
文摘In this paper, we establish a common fixed pointtheorem for three pairs of self-mappings in fuzzy semi-metric space which improves and extends similar known results in the literature.
基金National High Technology Research and Development Programof China(2001AA312180)
文摘The effect of mesa size on th e thermal characteristics of etched mesa vertical-cavity surface-emitting lase rs(VCSELs) is studied. The numerical results show that the mesa size of the top mirror strongly influences the temperature distribution inside the etched mesa V CSEL. Under a certain driving voltage, with decreasing mesa size, the location o f the maximal temperature moves towards the p-contact metal, the temperature in the core region of the active layer rises greatly, and the thermal characterist ics of the etched mesa VCSELs will deteriorate.
基金The study is sponsored by the National Natural Science Foundation of China (No. 50538010) and the Flander (Belgium)-China Bilateral Project (,No. BIL 07/07).
文摘The traffic-induced vibrations of the new CCTV Headquarters building are studied stages. In the first stage when the through experiments in two 30th floor of the northwest tower and the 38th floor of the southeast tower were finished, the traffic flows on the roads surrounding the building were investigated, and 27 setups of accelerations were measured at the roadside, on the pile cap and on the 9th floor. In the second stage when the whole steel structure was completed, l 5 setups of accelerations were measured at the roadside, on the pile cap and on the 37th and the 48th floors. The accelerations of the building under different traffic flows, in different positions are analyzed in both time domain and frequency domain. The damping ratios are estimated by the upgraded half-power bandwidth method.
基金S.Chauhan and Maninder Kaur thank UGC,New Delhi for financial assistance under the project(F.No.42-249/2013/SR)award of Senior Research Fellowship(No.F.17-40/2008(SA-1)dated 31.07.2014)+1 种基金Himachal Pradesh University for Senior Research Fellowship(F.No.1-3/2013-HPU(DS)5111)Financial support from UGC-SAP(DRS-I)(No.F.540/3/DRS/2010(SAP-1))to Department of Chemistry,HPU
文摘Modulation in the aggregation behavior of bio-surfactants (bile salts), sodium cholate (NaC) and sodium deoxycholate (NaDC) in aqueous solutions of carbohydrates (galactose and lactose) have been investigated by measuring the density (ρ), speed of sound (u) and viscosity (η) of the mixtures at different temperatures 293.15, 298.15, 303.15, 308.15 and 313.15 K. The density and speed of sound data have been used to calculate various volumetric and compressibility parameters such as apparent molar volume (Vφ), isentropic compressibil- ity (κs), apparent molar adiabatic compression (κs,φ) to get a better insight into the micellization mechanism of bile salts. Further, the viscosity data have been studied in the light of relative viscosity (ηr) and viscous relaxation time (τ). Some derived parameters such as free volume (νf), internal pressure (πi) and molar cohesive energy (MCE) of NaC and NaDC in aqueous solution of saccharides have also been calculated from viscosity data in con- junction with density and speed of sound values. All the calculated and derived parameters provide qualitative information regarding the nature of interactions i.e. solute-solute, solute-solvent and solvent-solvent in the solution.
基金supported by the National Natural Science Foundation of China (41530424)
文摘The interannual variability of the boreal winter Hadley circulation extents during the period of 1979e2014 and its links to El Ni^no-Southern Oscillation(ENSO) were investigated by using reanalysis datasets. Results showed that the El Ni^no(La Ni^na) events can induce the shrinking(expansion) of Hadley circulation extent in the Southern Hemisphere. For the Northern Hemisphere, El Ni^no(La Ni^na) mainly leads to shrinking(expansion) of the Hadley circulation extent in the middle and lower troposphere and expansion(shrinking) of the Hadley circulation extent in the upper troposphere. The ENSO associated meridional temperature gradients have close relationship with the Hadley circulation extents in both Hemispheres. But in the Northern Hemisphere, the ENSO associated eddy momentum flux divergence plays more important role in affecting the Hadley circulation extent than the meridional temperature gradient because of the small local Rossby number. In the Southern Hemisphere, as the ENSO induced eddy momentum flux divergence is small, the meridional temperature gradient dominates the change of the Hadley circulation extent.
文摘A novel system configuration of fiber optic sensor based on optical abso rption is proposed. Several compensation measures are discussed. A simulated exp eriment is designed and the output curve of system is given. The experiment al result shows that these compensation measures are effective on dynamic distu rbances which are caused by background light and optical fiber bend. In addition , the drifts in the light source intensity, fiber losses, and photodetector effi ciency are also compensated.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA20060501]the National Basic Research Program of China[grant numbers 2017YFA0604000 and 2016YFB0200800]the National Natural Science Foundation of China[grant number 41530426]。
文摘By using four-year CloudSat/CALIPSO satellite data,the authors investigated cloud microphysical properties in three representative regions over East Asia,where models commonly suffer from great biases in simulations of cloud radiative effects.This study aims to provide an observational basis of cloud microphysical properties for the modeling community,against which the model simulations can be validated.The analyzed cloud microphysical properties include mass,number concentration,and effective radius for both liquid and ice phases.For liquid clouds,both cloud mass and number concentration gradually decrease with height,leading to the effective radius being nearly uniformly spread in the range of 8-14μm.For ice clouds,the cloud mass and effective radius decrease with height,whereas the number concentration is nearly uniform in the vertical.The cloud microphysical properties show remarkable differences among different cloud types.Cloud mass and number concentration are larger in cumuliform clouds,whereas smaller in cirrus clouds.By comparing cloud properties among the Tibetan Plateau,East China,and the western North Pacific,results show the values are overall smaller for liquid clouds but larger for ice clouds over the Tibetan Plateau.
文摘Abstract: A micro - power consumption non - contact temperature measuring instrument for big rotor is introduced. As it solves very well the signal coupling under high speed rotation and power supply problem for probe, the instrument can realize persistent on - line temperature measurement for big rotor drived by the ordinary light transmitted by optical fiber under the room light.
文摘Using a Taylor series expansion for the Fermi-Dirac occupation function,an accurate analytical model is developed for calculating the trapped-charge density in a-Si: H considering deep and tail states simultaneously without simplification.This is followed by the investigation of the relative errors of the localized trapped charge density in a-Si:H at all temperatures as a function of the quasi-Fermi level in the band gap calculated from three published analytical models and our above model. The results suggest that the relative errors of all these models increase notably as Efn is very closed to Ec(e.g.,-0.01 eV< Efn-Ec).It is also noticed that the relative errors of all above models become larger normally the greater is the value of temperature.A detailed analysis indicates that each model has its own applicability with various temperatures and various positions of the Fermi level.
文摘Spatial pattern and interdependence of different soil and plant parameters were examined in green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari (MAIB), Italy. The study aimed to identify the spatial distribution of soil and plant parameters and their relationship at transects scale. The experiment consisted of three transects of 30 m length and 4.2 m width, irrigated with three different salinity levels (1 dSm"1, 3 dSm1, 6 dSml). Soil measurements (electrical conductivity and soil water content) were monitored along each transect in 24 sites, using TDR probe installed vertically at soil surface. Water storage was measured by using Diviner sensor for calculating directly the evapotranspiration fluxes along the whole soil profile under the different salinity levels imposed during the experiment. In the same 24 sites, crop monitoring involved measurements of Leaf Area Index (LAI), Osmotic Potential (OP), Root length Density (RID) and Evapotranspiration fluxes (ET). Soil and plant properties were analyzed using both classical and geostatistical methods which included descriptive statistics, semivariograms and cross-semivariograms. Results indicated that moderate to large spatial variability existed across the field for soil and plant parameters, especially under the 6 dSm1 salinity treatment. A relatively satisfactory fit of the experimental cross-semivariogram was obtained for the 6 dS1, thus indicating similar spatial structures of the pairs of compared variables. By contrast, the experimental cross-semivariograms observed under the 3 dS~ treatment indicated no significant correlation structure between the compared variables. Overall, the results observed in the 3 dSm-1 were not significantly different from those obtained in the 1 dSm-1 transect and suggested a general insensitivity of the crop response to those levels of salinity.
文摘Conventional thermoacoustic engines have a stack pore radius that is almost constant in the axial direction. Hence, a thermoacoustic engine is expected to improve the energy conversion efficiency using a multistage stack with multiple pore radii. The stack comprises several bundles of numerous narrow tubes with specified pore radii. The optimum pore radius of the stack is determined by the oscillation frequency and the temperature in the stack. Consequently, the suitable pore radius changes in the axial direction, because the temperature gradient exists along the stack axis. Therefore, a multistage stack with multiple pore radii is introduced, which achieves a desired optimum pore radius everywhere in the stack. The energy conversion efficiency of the multistage stack, which was studied experimentally for a straight-tube type thermoacoustic engine, was compared with that of a conventional single-stage stack. In these experiments, the improvement of the energy conversion efficiency was confirmed. A numerical method with the transmittance matrix to include the effect of a multistage stack was used, and good agreement between experimental and numerical results was obtained. The results make a future possibilities for stack design intended to higher thermoacoustic engine efficiency expect.
基金supported by the National Natural Science Foundation of China (21325523, 21527811)the Shandong Province Science Foundation for Youths (ZR2016HQ07)the Award for Team Leader Program of Taishan Scholars of Shandong Province, China
文摘Rapid, accurate and sensitive detection of particular DNA sequence is critical in fundamental biomedical research and clinical diagnostics. However, conventional approaches for DNA assay often suffer from cumbersome procedures, long analysis time and insufficient sensitivity. Recently, single-particle detection technology has emerged as a powerful tool in the biosensing area due to its significant advantages of ultrahigh sensitivity, low sample-consumption and rapid analysis time. Especially, the introduction of novel nanomaterials has greatly promoted the development of single-particle detection and its applications for DNA sensing. In this review, we summarize the recent advance in single-particle detection strategies for DNA sensing, and focus mainly on metallic nanoparticle-and semiconductor quantum dot-based single-particle detection. We highlight the emerging trends in this field as well.
基金the financial support from the National Natural Science Foundation of China(51774251)Shanghai Science and Technology Commission’s"2020 Science and Technology Innovation Action Plan"(20511104003)+2 种基金the Natural Science Foundation of Shanghai(21ZR1424200)Hebei Natural Science Foundation for Distinguished Young Scholars(B2017203313)Talent Engineering Training Funds of Hebei Province(A201802001)。
文摘To power large-scale energy storage systems,sodium-ion batteries(SIBs)must have not only high-energy density but also high performance under a low-temperature(LT)environment.P2-type manganese oxides with high specific capacity are promising cathode candidates for SIBs,but their LT applications are limitedly explored.We proposed a P2-type Na_(0.67)Ni_(0.1)Co_(0.1)Mn_(0.8)O_(2) material with outstanding LT performance prepared through reasonable structure modulation.The material offers an excellent Na^(+) diffusion coefficient(approximately 10^(−9)-10^(−7.5) cm^(2) s^(−1))at−20℃,a superior LT discharge capacity of 147.4 mA h g^(−1) in the Na half-cell system,and outstanding LT full cell performance(energy density of 358.3 W h kg^(−1)).Various characterisations and density function theory calculations results show that the solid solution reaction and pseudocapacitive feature promote the diffusion and desolvation of Na+from the bulk electrode to interface,finally achieving superior electrochemical performance at LT.
基金supported by the National Natural Science Foundation of China (51771094 and 21835004)the National Key R&D Program of China (2016YFB0901500)+1 种基金the Ministry of Education of China (B12015 and IRT13R30)Tianjin Natural Science Foundation (18JCZDJC31500)。
文摘The uneven deposition of lithium(Li) on current collectors causes serious dendrite growth and volume expansion. Commercial foamed copper(Cu) current collectors are unsuitable for Li anodes because of their large volume and mass and lithiophobic nature. Herein, a three-dimensional(3 D) copper@tin(Cu@Sn) nanocone current collector with small volume, light weight, and lithiophilic nature was prepared by a simple electrodeposition method. The synergy of the nanoconical structure and lithiophilic Sn promotes the even deposition of Li and effectively inhibits the formation of Li dendrites. The resultant half batteries exhibit high Coulombic efficiency of 97.6% after 100 cycles at 1 mA cm^(-2), and the symmetrical Li battery demonstrates a prolonged lifespan of over 600 h at 1 mA cm^(-2). The full battery based on organic liquid electrolyte with LiFePO_(4) also exhibits a long lifespan of 550 cycles with high capacity retention of 95.1% at 1 C.Moreover, 3 D Cu@Sn nanocone-based solid-state batteries exhibit excellent electrochemical performance and show no decay after 500 cycles at 1 C. Our work provides a strategy for fabricating 3 D current collectors for high-energy-density Li metal batteries.
基金the National Key Research and Development Program of China(2017YFA0604801)the National Natural Science Foundation of China(32071565 and 41773084)。
文摘The ecosystem apparent quantum yield(α),maximum rate of gross CO_(2) assimilation(Pmax)and daytime ecosystem respiration rate(R.),reflecting the physiological functioning of ecosystem,are vital photosynthetic parameters for the estimation of ecosystem carbon budget.Climatic drivers may affect photosynthetic parameters both directly and indirectly by altering the response of vegetation.However,the relative contribution and regulation pathway of environmental and physiological controls remain unclear,especially in semi-arid grasslands.We analyzed seasonal and interannual variations of photosynthetic parameters derived from eddy-covariance observation in a typical semi-arid grassland in Inner Mongolia,Northern China,over 12 years from 2006 to 2017.Regression analyses and a structural equation model(SEM)were adopted to separate the contributions of environmental and physiological effects.The photosynthetic parameters showed unimodal seasonal patterns and significantly interannual variations.Variations of air temperature(T,)and soil water content(SWC)drove the seasonal patterns of photosynthetic parameters,while SWC predominated their interannual variations.Moreover,contrasting with the predominant roles of T,onαand Ra,SWC explained more variance of Pmax than T,Results of SEM revealed that environmental factors impacted photosynthetic parameters both directly and indirectly through regulating physiological responses reflected by stomatal conductance at the canopy level.Moreover,leaf area index(LAl)directly affectedα,Pmax and R,and dominated the variation of Pmax.On the other hand,SWC influenced photosynthetic parameters indirectly through LAl and canopy surface conductance(gc).Our findings highlight the importance of physiological regulation on the photosynthetic parameters and carbon assimilation capacity,especially in water-limitedgrassland ecosystems.
基金supported by Fudan University through a poster-doctoral fellowshipNational Natural Science Foundation of China(Grant No.11001193)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK2011313)a fund of Suzhou University of Science and Technology
文摘In this article,the convergence of so-called Lax-Oleinik semigroup is studied for time-periodic Lagrangian systems when the degree of freedom is greater than 2.Under certain conditions,we show that the Lax-Oleinik semigroup converges if the rotation vector is completely irrational.Removing such conditions,we will give another kind of convergence of the sequence Fc((x,s),(x′,s′+Tn)),the convergence of which is closely related to the Lax-Oleinik semigroup.
基金supported by the National Science Foundation of China under Grants Nos. 60225003, 60334040, 60221301, 60774025, and 10831007Chinese Academy of Sciences under Grant No KJCX3-SYW-S01
文摘This paper considers the existence of global smooth solutions of semilinear schrSdinger equation with a boundary feedback on 2-dimensional Riemannian manifolds when initial data are small. The authors show that the existence of global solutions depends not only on the boundary feedback, but also on a Riemannian metric, given by the coefficient of the principle part and the original metric of the manifold. In particular, the authers prove that the energy of the system decays exponentially.