Seismic imaging of complicated underground structures with severe surface undulation(i.e.,double complex areas)is challenging owing to the difficulty of collecting the very weak reflected signal.Enhancing the weak sig...Seismic imaging of complicated underground structures with severe surface undulation(i.e.,double complex areas)is challenging owing to the difficulty of collecting the very weak reflected signal.Enhancing the weak signal is difficult even with state-of-the-art multi-domain and multidimensional prestack denoising techniques.This paper presents a time–space dip analysis of offset vector tile(OVT)domain data based on theτ-p transform.The proposed N-th root slant stack method enhances the signal in a three-dimensionalτ-p domain by establishing a zero-offset time-dip seismic attribute trace and calculating the coherence values of a given data sub-volume(i.e.,inline,crossline,time),which are then used to recalculate the data.After sorting,the new data provide a solid foundation for obtaining the optimal N value of the N-th root slant stack,which is used to enhance a weak signal.The proposed method was applied to denoising low signal-to-noise ratio(SNR)data from Western China.The optimal N value was determined for improving the SNR in deep strata,and the weak seismic signal was enhanced.The results showed that the proposed method effectively suppressed noise in low-SNR data.展开更多
In this paper,we consider the price of catastrophe options with credit risk in a regime-switching model.We assume that the macroeconomic states are described by a continuous-time Markov chain with a finite state space...In this paper,we consider the price of catastrophe options with credit risk in a regime-switching model.We assume that the macroeconomic states are described by a continuous-time Markov chain with a finite state space.By using the measure change technique,we derive the price expressions of catastrophe put options.Moreover,we conduct some numerical analysis to demonstrate how the parameters of the model affect the price of the catastrophe put option.展开更多
Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of pre...Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of precision spectroscopy and trace gas detection.Here,we report the development of a mid-infrared Fourier transform spectrometer based on an optical frequency comb combined with a Herriott-type multipass cell.Using this instrument,the broadband absorption spectra of several important molecules,including methane,acetylene,water molecules and nitrous oxide,are measured by near real-time data acquisition in the 2800-3500 cm^(-1)spectral region.The achieved minimum detectable absorption of the instrument is 4.4×10^(-8)cm^(-1)·Hz^(-1/2)per spectral element.Broadband spectra of H_(2)0 are fited using the Voigt profile multispectral fitting technique and the consistency of the concentration inversion is 1%.Our system also enables precise spectroscopic measurements,and it allows the determination of the spectral line positions and upper state constants of N_(2)O in the(0002)-(1000)band,with results in good agreement with those reported by Toth[Appl.Opt.30,5289(1991)].展开更多
Currently, the deghosting of towed streamer seismic data assumes a flat sea level and a sea-surface reflection coefficient of-1; this decreases the precision of deghosting. A new method that considers the rough sea su...Currently, the deghosting of towed streamer seismic data assumes a flat sea level and a sea-surface reflection coefficient of-1; this decreases the precision of deghosting. A new method that considers the rough sea surface is proposed to suppress ghost reflections. The proposed deghosting method obtains the rough sea surface reflection coefficient using Gaussian statistics, and calculates the optimized deghosting operator in the r/p domain. The proposed method is closer to the actual sea conditions, offers an improved deghosting operator, removes the ghost reflections from marine towed seismic data, widens the bandwidth and restores the low-frequency information, and finally improves the signal-to- noise ratio and resolution of the seismic data.展开更多
We present a method to calculate the full gravity gradient tensors from pre-existing vertical gravity data using the cosine transform technique and discuss the calculated tensor accuracy when the gravity anomalies are...We present a method to calculate the full gravity gradient tensors from pre-existing vertical gravity data using the cosine transform technique and discuss the calculated tensor accuracy when the gravity anomalies are contaminated by noise. Gravity gradient tensors computation on 2D infinite horizontal cylinder and 3D "Y" type dyke models show that the results computed with the DCT technique are more accurate than the FFT technique regardless if the gravity anomalies are contaminated by noise or not. The DCT precision has increased 2 to 3 times from the standard deviation. In application, the gravity gradient tensors of the Hulin basin calculated by DCT and FFT show that the two results are consistent with each other. However, the DCT results are smoother than results computed with FFT. This shows that the proposed method is less affected by noise and can better reflect the fault distribution.展开更多
In this paper,we develop a new and effective multiple scale and strongly directional method for identifying and suppressing ground roll based on the second generation curvelet transform.Making the best use of the curv...In this paper,we develop a new and effective multiple scale and strongly directional method for identifying and suppressing ground roll based on the second generation curvelet transform.Making the best use of the curvelet transform's strong local directional characteristics,seismic frequency bands are transformed into scale data with and without noise.Since surface waves and primary reflected waves have less overlap in the curvelet domain,we can effectively identify and separate noise.Applying this method to prestack seismic data can successfully remove surface waves and,at the same time,protect the reflected events well,particularly in the low-frequency band.This indicates that the method described in this paper is an effective and amplitude-preserving method.展开更多
We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic...We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic record is performed in the S domain to restore the amplitude spectrum of reflection. We use spectral simulation methods to fit the time-dependent amplitude spectrum and compensate for the amplitude attenuation owing to absorption. We use phase scanning to select the time-, space-, and frequencydependent phases correction based on the parsimony criterion and eliminate the residual phase effect of the wavelet in the S domain. The method does not directly calculate the Q value; thus, it can be applied to the case of variable Q. The comparison of the theory model and field data verify that the proposed method can recover the amplitude spectrum of the strata reflectivity, while eliminating the effect of the residual phase of the wavelet. Thus, the wavelet approaches the zero-phase wavelet and, the seismic resolution is improved.展开更多
The mapping method is a forward-modeling method that transforms the irregular surface to horizontal by mapping the rectangular grid as curved; moreover, the wave field calculations move from the physical domain to the...The mapping method is a forward-modeling method that transforms the irregular surface to horizontal by mapping the rectangular grid as curved; moreover, the wave field calculations move from the physical domain to the calculation domain. The mapping method deals with the irregular surface and the low-velocity layer underneath it using a fine grid. For the deeper high-velocity layers, the use of a fine grid causes local oversampling. In addition, when the irregular surface is transformed to horizontal, the flattened interface below the surface is transformed to curved, which produces inaccurate modeling results because of the presence of ladder-like burrs in the simulated seismic wave. Thus, we propose the mapping method based on the dual-variable finite-difference staggered grid. The proposed method uses different size grid spacings in different regions and locally variable time steps to match the size variability of grid spacings. Numerical examples suggest that the proposed method requires less memory storage capacity and improves the computational efficiency compared with forward modeling methods based on the conventional grid.展开更多
Currently, it is difficult for people to express signal information simultaneously in the time and frequency domains when analyzing acoustic logging signals using a simple-time or frequency-domain method. It is diffic...Currently, it is difficult for people to express signal information simultaneously in the time and frequency domains when analyzing acoustic logging signals using a simple-time or frequency-domain method. It is difficult to use a single type of time-frequency analysis method, which affects the feasibility of acoustic logging signal analysis. In order to solve these problems, in this paper, a fractional Fourier transform and smooth pseudo Wigner Ville distribution (SPWD) were combined and used to analyze array acoustic logging signals. The time-frequency distribution of signals with the variation of orders of fractional Fourier transform was obtained, and the characteristics of the time-frequency distribution of different reservoirs under different orders were summarized. Because of the rotational characteristics of the fractional Fourier transform, the rotation speed of the cross terms was faster than those of primary waves, shear waves, Stoneley waves, and pseudo Rayleigh waves. By choosing different orders for different reservoirs according to the actual circumstances, the cross terms were separated from the four kinds of waves. In this manner, we could extract reservoir information by studying the characteristics of partial waves. Actual logging data showed that the method outlined in this paper greatly weakened cross-term interference and enhanced the ability to identify partial wave signals.展开更多
The Hilbert-Huang transform(HHT) is a new analysis method suitable for nonlinear and non-stationary signals.It is very appropriate to seismic signals because they show both non-stationary and nonlinear characteristi...The Hilbert-Huang transform(HHT) is a new analysis method suitable for nonlinear and non-stationary signals.It is very appropriate to seismic signals because they show both non-stationary and nonlinear characteristics.We first introduce the realization of HHT empirical mode decomposition(EMD) and then comparatively analyze three instantaneous frequency algorithms based on intrinsic mode functions(IMF) resulting from EMD,of which one uses the average instantaneous frequency of two sample intervals having higher resolution which can determine that the signal frequency components change with time.The method is used with 3-D poststack migrated seismic data of marine carbonate strata in southern China to effectively extract the three instantaneous attributes.The instantaneous phase attributes of the second intrinsic mode functions(IMF2) better describe the reef facies of the platform margin and the IMF2 instantaneous frequency attribute has better zoning.Combining analysis of the three IMF2 instantaneous seismic attributes and drilling data can identify the distribution of sedimentary facies well.展开更多
In this paper,we explore the use of iterative curvelet thresholding for seismic random noise attenuation.A new method for combining the curvelet transform with iterative thresholding to suppress random noise is demons...In this paper,we explore the use of iterative curvelet thresholding for seismic random noise attenuation.A new method for combining the curvelet transform with iterative thresholding to suppress random noise is demonstrated and the issue is described as a linear inverse optimal problem using the L1 norm.Random noise suppression in seismic data is transformed into an L1 norm optimization problem based on the curvelet sparsity transform. Compared to the conventional methods such as median filter algorithm,FX deconvolution, and wavelet thresholding,the results of synthetic and field data processing show that the iterative curvelet thresholding proposed in this paper can sufficiently improve signal to noise radio(SNR) and give higher signal fidelity at the same time.Furthermore,to make better use of the curvelet transform such as multiple scales and multiple directions,we control the curvelet direction of the result after iterative curvelet thresholding to further improve the SNR.展开更多
Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-t...Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-time, is analyzed. The algorithm will no longer have the processing of decimation and interpolation of usual WT. The formulae of the decomposition and the reconstruction are given. Simulation results of the MEMS (micro-electro mechanical systems) gyroscope drift signal show that the algorithm spends much less processing time to finish the de-noising process than the usual WT. And the de-noising effect is the same. The fast algorithm has been implemented in a TMS320C6713 digital signal processor. The standard variance of the gyroscope static drift signal decreases from 78. 435 5 (°)/h to 36. 763 5 (°)/h. It takes 0. 014 ms to process all input data and can meet the real-time analysis of signal.展开更多
In this paper, we built upon the estimating primaries by sparse inversion (EPSI) method. We use the 3D curvelet transform and modify the EPSI method to the sparse inversion of the biconvex optimization and Ll-norm r...In this paper, we built upon the estimating primaries by sparse inversion (EPSI) method. We use the 3D curvelet transform and modify the EPSI method to the sparse inversion of the biconvex optimization and Ll-norm regularization, and use alternating optimization to directly estimate the primary reflection coefficients and source wavelet. The 3D curvelet transform is used as a sparseness constraint when inverting the primary reflection coefficients, which results in avoiding the prediction subtraction process in the surface-related multiples elimination (SRME) method. The proposed method not only reduces the damage to the effective waves but also improves the elimination of multiples. It is also a wave equation- based method for elimination of surface multiple reflections, which effectively removes surface multiples under complex submarine conditions.展开更多
In order to improve the data throughput of the advanced encryption standard (AES) IP core while reducing the hardware resource consumption and finally achieving a tradeoff between speed and area, a mixed pipeline ar...In order to improve the data throughput of the advanced encryption standard (AES) IP core while reducing the hardware resource consumption and finally achieving a tradeoff between speed and area, a mixed pipeline architecture and reconfigurable technology for the design and implementation of the AES IP core is proposed. The encryption and decryption processes of the AES algorithm are achieved in the same process within the mixed pipeline structure. According to the finite field characterizations, the Sbox in the AES algorithm is optimized. ShiftRow and MixColumn, which are the main components in AES round transformation, are optimized with the reconfigurable technology. The design is implemented on the Xilinx Virtex2p xc2vp20-7 field programmable gate array (FPGA) device. It can achieve a data throughput above 2.58 Gbit/s, and it only requires 3 233 slices. Compared with other related designs of AES IP cores on the same device, the proposed design can achieve a tradeoff between speed and area, and obtain satisfactory results in both data throughput and hardware resource consumption.展开更多
The damage or loss of urban road manhole covers may cause great risk to residents' lives and property if they cannot be discovered in time. Most existing research recommendations for solving this problem are difficul...The damage or loss of urban road manhole covers may cause great risk to residents' lives and property if they cannot be discovered in time. Most existing research recommendations for solving this problem are difficult to implement. This paper proposes an algorithm that combines the improved Hough transform and image comparison to identify the damage or loss of the manhole covers in complicated surface conditions by using existing urban road video images. Focusing on the pre-processed images, the edge contour tracking algorithm is applied to find all of the edges. Then with the improved Hough transformation, color recognition and image matching algorithm, the manhole cover area is found and the change rates of the manhole cover area are calculated. Based on the threshold of the change rates, it can be determined whether there is potential damage or loss in the manhole cover. Compared with the traditional Hough transform, the proposed method can effectively improve the processing speed and reduce invalid sampling and accumulation. Experimental results indicate that the proposed algorithm has the functions of effective positioning and early warning in the conditions of complex background, different perspectives, and different videoing time and conditions, such as when the target is partially covered.展开更多
To monitor the tool wear states in turning, a new way based on the wavelet transformation to get the signal characters, which can reflect the tool wear states, was proposed. Using discrete dyadic wavelet transform, th...To monitor the tool wear states in turning, a new way based on the wavelet transformation to get the signal characters, which can reflect the tool wear states, was proposed. Using discrete dyadic wavelet transform, the acoustic emission(AE) signal of cutting process was decomposed; the root mean square(RMS) values of the decomposed signals at different scales were taken as the feature vector; the technique of fuzzy pattern identification was used to real time monitor the tool wear states. Based on choosing the suitable standard samples, this method can correctly identify the tool wear states. Experiments showed that the technique based on wavelet analysis is suitable for real time implementation in manufacturing application.展开更多
The accurate identification of delay time in millisecond blasting plays an important role in the optimization of blasting design and reduction of vibration effect. Through a case study of a surge shaft blasting projec...The accurate identification of delay time in millisecond blasting plays an important role in the optimization of blasting design and reduction of vibration effect. Through a case study of a surge shaft blasting project, the capability of the EMD (empirical mode decomposition) method in identifying the delay time of short millisecond blasting with precise initiation was compared with the instantaneous energy method based on Hilbert-Huang transform (HHT). The recognition rate of the EMD method was more than 80%, while the instantaneous energy method was less than 25%. By analyzing the instantaneous energy of single-hole blasting signal, it was found that the instantaneous energy method was adaptable to millisecond blasting with delay time longer than half of the energy peak period. The EMD method was used to identify delay time of millisecond blasting in Zijinshan open-pit mine. According to the identification results, the blasting parameters were optimized for controlling the blast-induced vibration and reducing the large block ratio. The field data showed that the velocity peak of ground vibration was reduced by more than 30%under almost the same maximum charge per delay by the optimization of delay time and detonating detonators. Combining with slag-remaining blasting and burden optimization of the first row, the large block ratio was reduced to less than 3%. The research results proved that the identification method based on HHT was feasible to optimize the blasting design. The identification method is also of certain reference value for design optimization of other similar blasting projects.展开更多
In seismic data processing, random noise seriously affects the seismic data quality and subsequently the interpretation. This study aims to increase the signal-to-noise ratio by suppressing random noise and improve th...In seismic data processing, random noise seriously affects the seismic data quality and subsequently the interpretation. This study aims to increase the signal-to-noise ratio by suppressing random noise and improve the accuracy of seismic data interpretation without losing useful information. Hence, we propose a structure-oriented polynomial fitting filter. At the core of structure-oriented filtering is the characterization of the structural trend and the realization of nonstationary filtering. First, we analyze the relation of the frequency response between two-dimensional(2D) derivatives and the 2D Hilbert transform. Then, we derive the noniterative seismic local dip operator using the 2D Hilbert transform to obtain the structural trend. Second, we select polynomial fitting as the nonstationary filtering method and expand the application range of the nonstationary polynomial fitting. Finally, we apply variableamplitude polynomial fitting along the direction of the dip to improve the adaptive structureoriented filtering. Model and field seismic data show that the proposed method suppresses the seismic noise while protecting structural information.展开更多
文摘Seismic imaging of complicated underground structures with severe surface undulation(i.e.,double complex areas)is challenging owing to the difficulty of collecting the very weak reflected signal.Enhancing the weak signal is difficult even with state-of-the-art multi-domain and multidimensional prestack denoising techniques.This paper presents a time–space dip analysis of offset vector tile(OVT)domain data based on theτ-p transform.The proposed N-th root slant stack method enhances the signal in a three-dimensionalτ-p domain by establishing a zero-offset time-dip seismic attribute trace and calculating the coherence values of a given data sub-volume(i.e.,inline,crossline,time),which are then used to recalculate the data.After sorting,the new data provide a solid foundation for obtaining the optimal N value of the N-th root slant stack,which is used to enhance a weak signal.The proposed method was applied to denoising low signal-to-noise ratio(SNR)data from Western China.The optimal N value was determined for improving the SNR in deep strata,and the weak seismic signal was enhanced.The results showed that the proposed method effectively suppressed noise in low-SNR data.
基金supported by the Jiangsu University Philosophy and Social Science Research Project(Grant No.2019SJA1326).
文摘In this paper,we consider the price of catastrophe options with credit risk in a regime-switching model.We assume that the macroeconomic states are described by a continuous-time Markov chain with a finite state space.By using the measure change technique,we derive the price expressions of catastrophe put options.Moreover,we conduct some numerical analysis to demonstrate how the parameters of the model affect the price of the catastrophe put option.
基金supported by the National Natural Science Foundation China(No.42022051,No.U21A2028)Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y202089)the HFIPS Director's Fund(No.YZJJ202101,No.BJPY2023A02).
文摘Optical frequency combbased Fourier transform spectroscopy has the features of broad spectral bandwidth,high sensitivity,andmultiplexed trace gas detection,which has valuable application potential in the fields of precision spectroscopy and trace gas detection.Here,we report the development of a mid-infrared Fourier transform spectrometer based on an optical frequency comb combined with a Herriott-type multipass cell.Using this instrument,the broadband absorption spectra of several important molecules,including methane,acetylene,water molecules and nitrous oxide,are measured by near real-time data acquisition in the 2800-3500 cm^(-1)spectral region.The achieved minimum detectable absorption of the instrument is 4.4×10^(-8)cm^(-1)·Hz^(-1/2)per spectral element.Broadband spectra of H_(2)0 are fited using the Voigt profile multispectral fitting technique and the consistency of the concentration inversion is 1%.Our system also enables precise spectroscopic measurements,and it allows the determination of the spectral line positions and upper state constants of N_(2)O in the(0002)-(1000)band,with results in good agreement with those reported by Toth[Appl.Opt.30,5289(1991)].
基金supported by the 12th Five Year Plan National Science and Technology Major Projects(No.20011ZX05023-003-002)Research projects of CNOOC(No.C/KJF JDCJF 006-2009)
文摘Currently, the deghosting of towed streamer seismic data assumes a flat sea level and a sea-surface reflection coefficient of-1; this decreases the precision of deghosting. A new method that considers the rough sea surface is proposed to suppress ghost reflections. The proposed deghosting method obtains the rough sea surface reflection coefficient using Gaussian statistics, and calculates the optimized deghosting operator in the r/p domain. The proposed method is closer to the actual sea conditions, offers an improved deghosting operator, removes the ghost reflections from marine towed seismic data, widens the bandwidth and restores the low-frequency information, and finally improves the signal-to- noise ratio and resolution of the seismic data.
基金supported by the Scientific Research Starting Foundation of HoHai University,China(2084/40801136)the Fundamental Research Funds for the Central Universities(No.2009B12514)
文摘We present a method to calculate the full gravity gradient tensors from pre-existing vertical gravity data using the cosine transform technique and discuss the calculated tensor accuracy when the gravity anomalies are contaminated by noise. Gravity gradient tensors computation on 2D infinite horizontal cylinder and 3D "Y" type dyke models show that the results computed with the DCT technique are more accurate than the FFT technique regardless if the gravity anomalies are contaminated by noise or not. The DCT precision has increased 2 to 3 times from the standard deviation. In application, the gravity gradient tensors of the Hulin basin calculated by DCT and FFT show that the two results are consistent with each other. However, the DCT results are smoother than results computed with FFT. This shows that the proposed method is less affected by noise and can better reflect the fault distribution.
基金the Natural Science Foundation(Grant No.40739908)National Basic Research Program of China(973 Program)(Grant No.2007CB209605).
文摘In this paper,we develop a new and effective multiple scale and strongly directional method for identifying and suppressing ground roll based on the second generation curvelet transform.Making the best use of the curvelet transform's strong local directional characteristics,seismic frequency bands are transformed into scale data with and without noise.Since surface waves and primary reflected waves have less overlap in the curvelet domain,we can effectively identify and separate noise.Applying this method to prestack seismic data can successfully remove surface waves and,at the same time,protect the reflected events well,particularly in the low-frequency band.This indicates that the method described in this paper is an effective and amplitude-preserving method.
基金supported by the National Natural Science Foundation of China(No.41204091)New Teachers’ Fund for Doctor Stations,the Ministry of Education(No.20105122120001)Science and Technology Support Program from Science and Technology Department of Sichuan Province(No.2011GZ0244)
文摘We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic record is performed in the S domain to restore the amplitude spectrum of reflection. We use spectral simulation methods to fit the time-dependent amplitude spectrum and compensate for the amplitude attenuation owing to absorption. We use phase scanning to select the time-, space-, and frequencydependent phases correction based on the parsimony criterion and eliminate the residual phase effect of the wavelet in the S domain. The method does not directly calculate the Q value; thus, it can be applied to the case of variable Q. The comparison of the theory model and field data verify that the proposed method can recover the amplitude spectrum of the strata reflectivity, while eliminating the effect of the residual phase of the wavelet. Thus, the wavelet approaches the zero-phase wavelet and, the seismic resolution is improved.
基金financially supported by the National Natural Science Foundation of China(Nos.41104069 and 41274124)the National 973 Project(Nos.2014CB239006 and 2011CB202402)+1 种基金the Shandong Natural Science Foundation of China(No.ZR2011DQ016)Fundamental Research Funds for Central Universities(No.R1401005A)
文摘The mapping method is a forward-modeling method that transforms the irregular surface to horizontal by mapping the rectangular grid as curved; moreover, the wave field calculations move from the physical domain to the calculation domain. The mapping method deals with the irregular surface and the low-velocity layer underneath it using a fine grid. For the deeper high-velocity layers, the use of a fine grid causes local oversampling. In addition, when the irregular surface is transformed to horizontal, the flattened interface below the surface is transformed to curved, which produces inaccurate modeling results because of the presence of ladder-like burrs in the simulated seismic wave. Thus, we propose the mapping method based on the dual-variable finite-difference staggered grid. The proposed method uses different size grid spacings in different regions and locally variable time steps to match the size variability of grid spacings. Numerical examples suggest that the proposed method requires less memory storage capacity and improves the computational efficiency compared with forward modeling methods based on the conventional grid.
基金supported by National Natural Science Foundation of China(Grant No.40874059)
文摘Currently, it is difficult for people to express signal information simultaneously in the time and frequency domains when analyzing acoustic logging signals using a simple-time or frequency-domain method. It is difficult to use a single type of time-frequency analysis method, which affects the feasibility of acoustic logging signal analysis. In order to solve these problems, in this paper, a fractional Fourier transform and smooth pseudo Wigner Ville distribution (SPWD) were combined and used to analyze array acoustic logging signals. The time-frequency distribution of signals with the variation of orders of fractional Fourier transform was obtained, and the characteristics of the time-frequency distribution of different reservoirs under different orders were summarized. Because of the rotational characteristics of the fractional Fourier transform, the rotation speed of the cross terms was faster than those of primary waves, shear waves, Stoneley waves, and pseudo Rayleigh waves. By choosing different orders for different reservoirs according to the actual circumstances, the cross terms were separated from the four kinds of waves. In this manner, we could extract reservoir information by studying the characteristics of partial waves. Actual logging data showed that the method outlined in this paper greatly weakened cross-term interference and enhanced the ability to identify partial wave signals.
基金supported by the National 863 Program (Grant No. 2008AA093001)
文摘The Hilbert-Huang transform(HHT) is a new analysis method suitable for nonlinear and non-stationary signals.It is very appropriate to seismic signals because they show both non-stationary and nonlinear characteristics.We first introduce the realization of HHT empirical mode decomposition(EMD) and then comparatively analyze three instantaneous frequency algorithms based on intrinsic mode functions(IMF) resulting from EMD,of which one uses the average instantaneous frequency of two sample intervals having higher resolution which can determine that the signal frequency components change with time.The method is used with 3-D poststack migrated seismic data of marine carbonate strata in southern China to effectively extract the three instantaneous attributes.The instantaneous phase attributes of the second intrinsic mode functions(IMF2) better describe the reef facies of the platform margin and the IMF2 instantaneous frequency attribute has better zoning.Combining analysis of the three IMF2 instantaneous seismic attributes and drilling data can identify the distribution of sedimentary facies well.
基金the National Science & Technology Major Projects(Grant No.2008ZX05023-005-013).
文摘In this paper,we explore the use of iterative curvelet thresholding for seismic random noise attenuation.A new method for combining the curvelet transform with iterative thresholding to suppress random noise is demonstrated and the issue is described as a linear inverse optimal problem using the L1 norm.Random noise suppression in seismic data is transformed into an L1 norm optimization problem based on the curvelet sparsity transform. Compared to the conventional methods such as median filter algorithm,FX deconvolution, and wavelet thresholding,the results of synthetic and field data processing show that the iterative curvelet thresholding proposed in this paper can sufficiently improve signal to noise radio(SNR) and give higher signal fidelity at the same time.Furthermore,to make better use of the curvelet transform such as multiple scales and multiple directions,we control the curvelet direction of the result after iterative curvelet thresholding to further improve the SNR.
基金The National High Technology Research and Devel-opment Program of China (863Program) (No2002AA812038)
文摘Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-time, is analyzed. The algorithm will no longer have the processing of decimation and interpolation of usual WT. The formulae of the decomposition and the reconstruction are given. Simulation results of the MEMS (micro-electro mechanical systems) gyroscope drift signal show that the algorithm spends much less processing time to finish the de-noising process than the usual WT. And the de-noising effect is the same. The fast algorithm has been implemented in a TMS320C6713 digital signal processor. The standard variance of the gyroscope static drift signal decreases from 78. 435 5 (°)/h to 36. 763 5 (°)/h. It takes 0. 014 ms to process all input data and can meet the real-time analysis of signal.
基金supported by the National Science and Technology Major Project (No.2011ZX05023-005-008)
文摘In this paper, we built upon the estimating primaries by sparse inversion (EPSI) method. We use the 3D curvelet transform and modify the EPSI method to the sparse inversion of the biconvex optimization and Ll-norm regularization, and use alternating optimization to directly estimate the primary reflection coefficients and source wavelet. The 3D curvelet transform is used as a sparseness constraint when inverting the primary reflection coefficients, which results in avoiding the prediction subtraction process in the surface-related multiples elimination (SRME) method. The proposed method not only reduces the damage to the effective waves but also improves the elimination of multiples. It is also a wave equation- based method for elimination of surface multiple reflections, which effectively removes surface multiples under complex submarine conditions.
文摘In order to improve the data throughput of the advanced encryption standard (AES) IP core while reducing the hardware resource consumption and finally achieving a tradeoff between speed and area, a mixed pipeline architecture and reconfigurable technology for the design and implementation of the AES IP core is proposed. The encryption and decryption processes of the AES algorithm are achieved in the same process within the mixed pipeline structure. According to the finite field characterizations, the Sbox in the AES algorithm is optimized. ShiftRow and MixColumn, which are the main components in AES round transformation, are optimized with the reconfigurable technology. The design is implemented on the Xilinx Virtex2p xc2vp20-7 field programmable gate array (FPGA) device. It can achieve a data throughput above 2.58 Gbit/s, and it only requires 3 233 slices. Compared with other related designs of AES IP cores on the same device, the proposed design can achieve a tradeoff between speed and area, and obtain satisfactory results in both data throughput and hardware resource consumption.
基金The Natural Science Fundation of Education Department of Anhui Province(No.KJ2012B051)
文摘The damage or loss of urban road manhole covers may cause great risk to residents' lives and property if they cannot be discovered in time. Most existing research recommendations for solving this problem are difficult to implement. This paper proposes an algorithm that combines the improved Hough transform and image comparison to identify the damage or loss of the manhole covers in complicated surface conditions by using existing urban road video images. Focusing on the pre-processed images, the edge contour tracking algorithm is applied to find all of the edges. Then with the improved Hough transformation, color recognition and image matching algorithm, the manhole cover area is found and the change rates of the manhole cover area are calculated. Based on the threshold of the change rates, it can be determined whether there is potential damage or loss in the manhole cover. Compared with the traditional Hough transform, the proposed method can effectively improve the processing speed and reduce invalid sampling and accumulation. Experimental results indicate that the proposed algorithm has the functions of effective positioning and early warning in the conditions of complex background, different perspectives, and different videoing time and conditions, such as when the target is partially covered.
文摘To monitor the tool wear states in turning, a new way based on the wavelet transformation to get the signal characters, which can reflect the tool wear states, was proposed. Using discrete dyadic wavelet transform, the acoustic emission(AE) signal of cutting process was decomposed; the root mean square(RMS) values of the decomposed signals at different scales were taken as the feature vector; the technique of fuzzy pattern identification was used to real time monitor the tool wear states. Based on choosing the suitable standard samples, this method can correctly identify the tool wear states. Experiments showed that the technique based on wavelet analysis is suitable for real time implementation in manufacturing application.
基金Project(2013BAB02B05)supported by the National 12th Five-Year Science and Technology Supporting Plan of ChinaProject(2015CX005)supported by the Innovation Driven Plan of Central South University of ChinaProject(2016zzts094)supported by the Fundamental Research Funds for the Central Universities of Central South University,China
文摘The accurate identification of delay time in millisecond blasting plays an important role in the optimization of blasting design and reduction of vibration effect. Through a case study of a surge shaft blasting project, the capability of the EMD (empirical mode decomposition) method in identifying the delay time of short millisecond blasting with precise initiation was compared with the instantaneous energy method based on Hilbert-Huang transform (HHT). The recognition rate of the EMD method was more than 80%, while the instantaneous energy method was less than 25%. By analyzing the instantaneous energy of single-hole blasting signal, it was found that the instantaneous energy method was adaptable to millisecond blasting with delay time longer than half of the energy peak period. The EMD method was used to identify delay time of millisecond blasting in Zijinshan open-pit mine. According to the identification results, the blasting parameters were optimized for controlling the blast-induced vibration and reducing the large block ratio. The field data showed that the velocity peak of ground vibration was reduced by more than 30%under almost the same maximum charge per delay by the optimization of delay time and detonating detonators. Combining with slag-remaining blasting and burden optimization of the first row, the large block ratio was reduced to less than 3%. The research results proved that the identification method based on HHT was feasible to optimize the blasting design. The identification method is also of certain reference value for design optimization of other similar blasting projects.
基金Research supported by the 863 Program of China(No.2012AA09A20103)the National Natural Science Foundation of China(No.41274119,No.41174080,and No.41004041)
文摘In seismic data processing, random noise seriously affects the seismic data quality and subsequently the interpretation. This study aims to increase the signal-to-noise ratio by suppressing random noise and improve the accuracy of seismic data interpretation without losing useful information. Hence, we propose a structure-oriented polynomial fitting filter. At the core of structure-oriented filtering is the characterization of the structural trend and the realization of nonstationary filtering. First, we analyze the relation of the frequency response between two-dimensional(2D) derivatives and the 2D Hilbert transform. Then, we derive the noniterative seismic local dip operator using the 2D Hilbert transform to obtain the structural trend. Second, we select polynomial fitting as the nonstationary filtering method and expand the application range of the nonstationary polynomial fitting. Finally, we apply variableamplitude polynomial fitting along the direction of the dip to improve the adaptive structureoriented filtering. Model and field seismic data show that the proposed method suppresses the seismic noise while protecting structural information.