[Objective] The aim of this study was to perform genome-wide analysis of glucose-6-phosphate dehydrogenase(G6PDH) and reveal its evolution in Eucalyptus grandsis.[Method] The gene character,protein sequence and phyl...[Objective] The aim of this study was to perform genome-wide analysis of glucose-6-phosphate dehydrogenase(G6PDH) and reveal its evolution in Eucalyptus grandsis.[Method] The gene character,protein sequence and phylogenetic tree of G6PDH gene were analyzed by BLAST and other bioinformatics software within Eucalyptus grandsis whole genome database.[Result] Six G6PDH genes,including one cytomic type and five plastids,were detected in the E.grandsis genome.All the G6PDHs have conserved motifs of motif 1,motif 2,motif 3,motif 7,motif 9 and motif 11.Furthermore,promoter sequences of all E.grandsis G6PDH contain TATA box,enhancer,light-responsive,hormone-responsive and stress-responsive regulatory elements.[Conclusion] This study provided reference for the further revealing molecular function of E.grandsis G6PDH gene family展开更多
AIM: To test the hypothesis that the variant UDP- glucuronosyltransferase 1A1 (UGT1A1) gene, glucose-6- phosphate dehydrogenase (G6PD) deficiency, and thalassemia influence bilirubin metabolism and play a role in...AIM: To test the hypothesis that the variant UDP- glucuronosyltransferase 1A1 (UGT1A1) gene, glucose-6- phosphate dehydrogenase (G6PD) deficiency, and thalassemia influence bilirubin metabolism and play a role in the development of cholelithiasis. METHODS: A total of 372 Taiwan Chinese with cholelithiasis who had undergone cholecystectomy and 293 healthy individuals were divided into case and control groups, respectively. PCR and restriction fragment length polymorphism were used to analyze the promoter area and nucleotides 211, 686, 1 091, and 1 456 of the UGT1A1 gene for all subjects and the gene variants for thalassemia and G6PD deficiency. RESULTS: Variation frequencies for the cholelithiasis patients were 16.1%, 25.8%, 5.4%, and 4.3% for A(TA)6 TAA/A(TA)TTAA (6/7), heterozygosity within the coding region, compound heterozygosity, and homozygosity of the UGT1A1 gene, respectively. Comparing the case and control groups, a statistically significant difference in frequency was demonstrated for the homozygous variation of the UGT1A1 gene (P = 0.012, Z2 test), but not for the other variations. Further, no difference was demonstrated in a between-group comparison of the incidence of G6PD deficiency and thalassemia (2.7% vs 2.4% and 5.1% vs 5.1%, respectively). The bilirubin levels for the cholelithiasis patients with the homozygous variant-UGT1A1 gene were significantly different from the control analog (18.0±6.5 and 12.7±2.9 μmol/L, respectively; P〈0.001, Student's ttest).CONCLUSION: Our results show that the homozygous variation in the UGT1A1 gene is a risk factor for the development of cholelithiasis in Taiwan Chinese. 2005 The WJG Press and Elsevier Inc. All rights reserved展开更多
脂肪酸是影响家鸡肉品质的重要风味物质,Δ6-脂肪酸脱氢酶基因(FADS2)是不饱和脂肪酸生物合成过程中的关键酶。研究以武定鸡和大围山微型鸡为研究对象,检测肌肉组织中脂肪酸含量及FADS2基因表达量,比较不同鸡种脂肪酸含量及FADS2基因表...脂肪酸是影响家鸡肉品质的重要风味物质,Δ6-脂肪酸脱氢酶基因(FADS2)是不饱和脂肪酸生物合成过程中的关键酶。研究以武定鸡和大围山微型鸡为研究对象,检测肌肉组织中脂肪酸含量及FADS2基因表达量,比较不同鸡种脂肪酸含量及FADS2基因表达差异。结果显示,整体上,武定鸡腿肌中饱和脂肪酸(SFA)、单不饱和脂肪酸(MUFA)、不饱和脂肪酸(USFA)、多不饱和脂肪酸(PUFA)、必需脂肪酸(EFA)及总脂肪酸含量和FADS2 m RNA表达量均显著高于大围山微型鸡,且在部位和周龄上存在显著差异。研究表明,武定鸡风味比大围山微型鸡优良,FADS2基因是影响家鸡肉品质的重要候选基因。展开更多
Objective To detect new mutations among 29 glucose 6 phosphate dehydrogenase (G6PD) deficient individuals from Yunnan province Methods The nitroblue tetrazolium (NBT) method was used to screen G6PD deficient ind...Objective To detect new mutations among 29 glucose 6 phosphate dehydrogenase (G6PD) deficient individuals from Yunnan province Methods The nitroblue tetrazolium (NBT) method was used to screen G6PD deficient individuals Mutation was identified by single strand conformation polymorphism (SSCP), amplification created restriction site (ACRS), amplification refractory mutation system (ARMS) and DNA sequencing Results Among 29 cases, 18 cases of G1388A, 1 case of C1004A, and 1 case of G1381A were identified Nine cases remained to be defined The G1381A mutation is a novel mis sense mutation, with a substitution of threonine for alanine (A461T) The resultant G6PD had reduced enzymatic activity In addition, G1381A caused a restriction site of Stu I to disappear, providing a rapid method for the detection of this mutation Conclusion A novel mis sense mutation G1381A was found This mutation results in a substitution of threonine for alanine, producing enzyme with reduced activity The loss of the Stu I restriction site offers a rapid method for the detection of this mutation展开更多
基金Supported by Seeding Raising Project from Guangdong Provincial Department(LYM10040)Open Research Project of Key Laboratory for Genetics and Breeding in Forest Trees and Ornamental Plants,MOE,Beijing Forestry University(FOP2010-4)~~
文摘[Objective] The aim of this study was to perform genome-wide analysis of glucose-6-phosphate dehydrogenase(G6PDH) and reveal its evolution in Eucalyptus grandsis.[Method] The gene character,protein sequence and phylogenetic tree of G6PDH gene were analyzed by BLAST and other bioinformatics software within Eucalyptus grandsis whole genome database.[Result] Six G6PDH genes,including one cytomic type and five plastids,were detected in the E.grandsis genome.All the G6PDHs have conserved motifs of motif 1,motif 2,motif 3,motif 7,motif 9 and motif 11.Furthermore,promoter sequences of all E.grandsis G6PDH contain TATA box,enhancer,light-responsive,hormone-responsive and stress-responsive regulatory elements.[Conclusion] This study provided reference for the further revealing molecular function of E.grandsis G6PDH gene family
基金Supported by a grant from the Cathay Medical Research Center, Taipei, Taiwan, China
文摘AIM: To test the hypothesis that the variant UDP- glucuronosyltransferase 1A1 (UGT1A1) gene, glucose-6- phosphate dehydrogenase (G6PD) deficiency, and thalassemia influence bilirubin metabolism and play a role in the development of cholelithiasis. METHODS: A total of 372 Taiwan Chinese with cholelithiasis who had undergone cholecystectomy and 293 healthy individuals were divided into case and control groups, respectively. PCR and restriction fragment length polymorphism were used to analyze the promoter area and nucleotides 211, 686, 1 091, and 1 456 of the UGT1A1 gene for all subjects and the gene variants for thalassemia and G6PD deficiency. RESULTS: Variation frequencies for the cholelithiasis patients were 16.1%, 25.8%, 5.4%, and 4.3% for A(TA)6 TAA/A(TA)TTAA (6/7), heterozygosity within the coding region, compound heterozygosity, and homozygosity of the UGT1A1 gene, respectively. Comparing the case and control groups, a statistically significant difference in frequency was demonstrated for the homozygous variation of the UGT1A1 gene (P = 0.012, Z2 test), but not for the other variations. Further, no difference was demonstrated in a between-group comparison of the incidence of G6PD deficiency and thalassemia (2.7% vs 2.4% and 5.1% vs 5.1%, respectively). The bilirubin levels for the cholelithiasis patients with the homozygous variant-UGT1A1 gene were significantly different from the control analog (18.0±6.5 and 12.7±2.9 μmol/L, respectively; P〈0.001, Student's ttest).CONCLUSION: Our results show that the homozygous variation in the UGT1A1 gene is a risk factor for the development of cholelithiasis in Taiwan Chinese. 2005 The WJG Press and Elsevier Inc. All rights reserved
文摘脂肪酸是影响家鸡肉品质的重要风味物质,Δ6-脂肪酸脱氢酶基因(FADS2)是不饱和脂肪酸生物合成过程中的关键酶。研究以武定鸡和大围山微型鸡为研究对象,检测肌肉组织中脂肪酸含量及FADS2基因表达量,比较不同鸡种脂肪酸含量及FADS2基因表达差异。结果显示,整体上,武定鸡腿肌中饱和脂肪酸(SFA)、单不饱和脂肪酸(MUFA)、不饱和脂肪酸(USFA)、多不饱和脂肪酸(PUFA)、必需脂肪酸(EFA)及总脂肪酸含量和FADS2 m RNA表达量均显著高于大围山微型鸡,且在部位和周龄上存在显著差异。研究表明,武定鸡风味比大围山微型鸡优良,FADS2基因是影响家鸡肉品质的重要候选基因。
基金ThisstudywassupportedbytheNationalNaturalScienceFoundationofChina (No 3 9670 40 1)
文摘Objective To detect new mutations among 29 glucose 6 phosphate dehydrogenase (G6PD) deficient individuals from Yunnan province Methods The nitroblue tetrazolium (NBT) method was used to screen G6PD deficient individuals Mutation was identified by single strand conformation polymorphism (SSCP), amplification created restriction site (ACRS), amplification refractory mutation system (ARMS) and DNA sequencing Results Among 29 cases, 18 cases of G1388A, 1 case of C1004A, and 1 case of G1381A were identified Nine cases remained to be defined The G1381A mutation is a novel mis sense mutation, with a substitution of threonine for alanine (A461T) The resultant G6PD had reduced enzymatic activity In addition, G1381A caused a restriction site of Stu I to disappear, providing a rapid method for the detection of this mutation Conclusion A novel mis sense mutation G1381A was found This mutation results in a substitution of threonine for alanine, producing enzyme with reduced activity The loss of the Stu I restriction site offers a rapid method for the detection of this mutation