期刊文献+
共找到90,992篇文章
< 1 2 250 >
每页显示 20 50 100
Multiple Tin Compounds Modified Carbon Fibers to Construct Heterogeneous Interfaces for Corrosion Prevention and Electromagnetic Wave Absorption 被引量:1
1
作者 Zhiqiang Guo Di Lan +6 位作者 Zirui Jia Zhenguo Gao Xuetao Shi Mukun He Hua Guo Guanglei Wu Pengfei Yin 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期507-527,共21页
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con... Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments. 展开更多
关键词 Electrostatic spinning Component regulation Heterogeneous interfaces Electromagnetic wave absorption Corrosion protection
下载PDF
Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment 被引量:4
2
作者 Jianghao Wen Di Lan +4 位作者 Yiqun Wang Lianggui Ren Ailing Feng Zirui Jia Guanglei Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1701-1712,共12页
Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed ... Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed on biomass Tremella using the swelling induction method,leading to the preparation of a three-dimensional network-structured hierarchical porous carbon(HPC)through carbonization.The achieved microwave absorption intensity is robust at-47.34 dB with a thin thickness of 2.1 mm.Notably,the widest effective absorption bandwidth,reaching 7.0 GHz(11–18 GHz),is attained at a matching thickness of 2.2 mm.The exceptional broadband and reflection loss performance are attributed to the 3D porous networks,interface effects,carbon network defects,and dipole relaxation.HPC has outstanding absorption characteristics due to its excellent impedance matching and high attenuation constant.The uniform pore structures considerably optimize the impedance-matching performance of the material,while the abundance of interfaces and defects enhances the dielectric loss,thereby improving the attenuation constant.Furthermore,the impact of carbonization temperature and swelling rate on microwave absorption performance was systematically investigated.This research presents a strategy for preparing absorbing materials using biomass-derived HPC,showcasing considerable potential in the field of electromagnetic wave absorption. 展开更多
关键词 BIOMASS hierarchical porous carbon dielectric loss electromagnetic wave absorption
下载PDF
Defects‑Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption
3
作者 Jiaolong Liu Siyu Zhang +14 位作者 Dan Qu Xuejiao Zhou Moxuan Yin Chenxuan Wang Xuelin Zhang Sichen Li Peijun Zhang Yuqi Zhou Kai Tao Mengyang Li Bing Wei Hongjing Wu Mengyang Li Bing Wei Hongjing Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期528-547,共20页
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how... Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response. 展开更多
关键词 Defects-rich heterointerfaces Sulfides Polarization coupling Electromagnetic wave absorption
下载PDF
Low‑Temperature Oxidation Induced Phase Evolution with Gradient Magnetic Heterointerfaces for Superior Electromagnetic Wave Absorption
4
作者 Zizhuang He Lingzi Shi +6 位作者 Ran Sun Lianfei Ding Mukun He Jiaming Li Hua Guo Tiande Gao Panbo Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期191-204,共14页
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan... Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption. 展开更多
关键词 Magnetic heterointerfaces Phase evolution Interfacial polarization Magnetic coupling Electromagnetic wave absorption
下载PDF
Study on the hydrogen absorption properties of a YGdTbDyHo rare-earth high-entropy alloy
5
作者 Tongyue Li Ziliang Xie +5 位作者 Wenjiao Zhou Huan Tong Dawen Yang Anjia Zhang Yuan Wu Xiping Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期127-135,共9页
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t... This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field. 展开更多
关键词 RARE-EARTH high-entropy alloy hydrogen absorption capacity pressure–composition–temperature curves KINETICS
下载PDF
Achieving Ultra-Broad Microwave Absorption Bandwidth Around Millimeter-Wave Atmospheric Window Through an Intentional Manipulation on Multi-Magnetic Resonance Behavior 被引量:2
6
作者 Chuyang Liu Lu Xu +6 位作者 Xueyu Xiang Yujing Zhang Li Zhou Bo Ouyang Fan Wu Dong‑Hyun Kim Guangbin Ji 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期291-307,共17页
The utilization of electromagnetic waves is rapidly advancing into the millimeter-wave frequency range,posing increasingly severe challenges in terms of electromagnetic pollution prevention and radar stealth.However,e... The utilization of electromagnetic waves is rapidly advancing into the millimeter-wave frequency range,posing increasingly severe challenges in terms of electromagnetic pollution prevention and radar stealth.However,existing millimeter-wave absorbers are still inadequate in addressing these issues due to their monotonous magnetic resonance pattern.In this work,rare-earth La^(3+)and non-magnetic Zr^(4+)ions are simultaneously incorporated into M-type barium ferrite(BaM)to intentionally manipulate the multi-magnetic resonance behavior.By leveraging the contrary impact of La^(3+)and Zr^(4+)ions on magnetocrystalline anisotropy field,the restrictive relationship between intensity and frequency of the multi-magnetic resonance is successfully eliminated.The magnetic resonance peak-differentiating and imitating results confirm that significant multi-magnetic resonance phenomenon emerges around 35 GHz due to the reinforced exchange coupling effect between Fe^(3+)and Fe^(2+)ions.Additionally,Mosbauer spectra analysis,first-principle calculations,and least square fitting collectively identify that additional La^(3+)doping leads to a profound rearrangement of Zr^(4+)occupation and thus makes the portion of polarization/conduction loss increase gradually.As a consequence,the La^(3+)-Zr^(4+)co-doped BaM achieves an ultra-broad bandwidth of 12.5+GHz covering from 27.5 to 40+GHz,which holds remarkable potential for millimeter-wave absorbers around the atmospheric window of 35 GHz. 展开更多
关键词 Microwave absorption Ultra-broad bandwidth M-type barium ferrite Magnetocrystalline anisotropy field Multimagnetic resonance
下载PDF
Structural and microwave absorption properties of CoFe_(2)O_(4)/residual carbon composites
7
作者 Yuanchun Zhang Shengtao Gao +3 位作者 Xingzhao Zhang Dacheng Ma Chuanlei Zhu Jun He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期221-232,共12页
Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_... Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality. 展开更多
关键词 coal gasification slag residual carbon hydrothermal method microwave absorption CoFe_(2)O_(4)
下载PDF
Preparation of CIP@TiO_(2) composite with broadband electromagnetic wave absorption properties 被引量:1
8
作者 Qiang Su Hanqun Wang +3 位作者 Yunfei He Dongdong Liu Xiaoxiao Huang Bo Zhong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期197-205,共9页
Scholars aim for the improved impedance matching (Z) of materials while maintaining their excellent wave absorption properties. Based on the hydrolysis characteristics of isopropyl titanate, a simple preparation proce... Scholars aim for the improved impedance matching (Z) of materials while maintaining their excellent wave absorption properties. Based on the hydrolysis characteristics of isopropyl titanate, a simple preparation process for the coating of carbonyl iron powder(CIP) with TiO_(2) was designed. Given the TiO2coating, the Z of the CIP@TiO_(2) composite was adjusted well by decreasing the dielectric constant. Moreover, the interfacial polarization of CIP@TiO_(2) was enhanced. Ultimately, the electromagnetic-wave (EMW) absorption property of the CIP@TiO_(2)composite was improved substantially, the minimum reflection loss reached-46.07 dB, and the effective absorption bandwidth can reach 8 GHz at the composite thickness of 1.5 mm. Moreover, compared with CIP, the oxidation resistance of CIP@TiO_(2)showed remarkable improvement. The results revealed that the oxidation starting temperature of CIP@TiO_(2) as about 400℃,whereas the uncoated CIP had an oxidation starting temperature of approximately 250℃. Moreover, the largest oxidation rate temperature of CIP@TiO_(2) increased to around 550℃. This work opens up a novel strategy for the production of high-performance EMW absorbers via structural design. 展开更多
关键词 carbonyl iron@titanium dioxide electromagnetic-wave absorption impedance matching oxidation resistance
下载PDF
Designing Electronic Structures of Multiscale Helical Converters for Tailored Ultrabroad Electromagnetic Absorption
9
作者 Zhaobo Feng Chongbo Liu +7 位作者 Xin Li Guangsheng Luo Naixin Zhai Ruizhe Hu Jing Lin Jinbin Peng Yuhui Peng Renchao Che 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期439-455,共17页
Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship betw... Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications. 展开更多
关键词 Metal-nonmetal co-doping 3d-2p orbital coupling Spin polarization Helical structure Broadband EM wave absorption
下载PDF
MOFs‑Derived Strategy and Ternary Alloys Regulation in Flower‑Like Magnetic‑Carbon Microspheres with Broadband Electromagnetic Wave Absorption
10
作者 Mengqiu Huang Bangxin Li +7 位作者 Yuetong Qian Lei Wang Huibin Zhang Chendi Yang Longjun Rao Gang Zhou Chongyun Liang Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期479-493,共15页
Broadband electromagnetic(EM)wave absorption materials play an important role in military stealth and health protection.Herein,metal–organic frameworks(MOFs)-derived magnetic-carbon CoNiM@C(M=Cu,Zn,Fe,Mn)microspheres... Broadband electromagnetic(EM)wave absorption materials play an important role in military stealth and health protection.Herein,metal–organic frameworks(MOFs)-derived magnetic-carbon CoNiM@C(M=Cu,Zn,Fe,Mn)microspheres are fabricated,which exhibit flower-like nano–microstructure with tunable EM response capacity.Based on the MOFs-derived CoNi@C microsphere,the adjacent third element is introduced into magnetic CoNi alloy to enhance EM wave absorption performance.In term of broadband absorption,the order of efficient absorption bandwidth(EAB)value is Mn>Fe=Zn>Cu in the CoNiM@C microspheres.Therefore,MOFs-derived flower-like CoNiMn@C microspheres hold outstanding broadband absorption and the EAB can reach up to 5.8 GHz(covering 12.2–18 GHz at 2.0 mm thickness).Besides,off-axis electron holography and computational simulations are applied to elucidate the inherent dielectric dissipation and magnetic loss.Rich heterointerfaces in CoNiMn@C promote the aggregation of the negative/positive charges at the contacting region,forming interfacial polarization.The graphitized carbon layer catalyzed by the magnetic CoNiMn core offered the electron mobility path,boosting the conductive loss.Equally importantly,magnetic coupling is observed in the CoNiMn@C to strengthen the magnetic responding behaviors.This study provides a new guide to build broadband EM absorption by regulating the ternary magnetic alloy. 展开更多
关键词 Magnetic-carbon microspheres MOFs derivatives Electromagnetic wave absorption Magnetic loss Broadband absorption
下载PDF
Robust,Flexible,and Superhydrophobic Fabrics for High-Efficiency and Ultrawide-Band Microwave Absorption
11
作者 Zhong Zhang Yaxin Meng +4 位作者 Xinrui Fang Qing Wang Xungai Wang Haitao Niu Hua Zhou 《Engineering》 SCIE EI CAS CSCD 2024年第10期161-171,共11页
Microwave absorption(MA)materials are essential for protecting against harmful electromagnetic radiation.In this study,highly efficient and ultrawide-band microwave-absorbing fabrics with superhydrophobic surface feat... Microwave absorption(MA)materials are essential for protecting against harmful electromagnetic radiation.In this study,highly efficient and ultrawide-band microwave-absorbing fabrics with superhydrophobic surface features were developed using a facile dip-coating method involving in situ graphene oxide(GO)reduction,deposition of TiO_(2)nanoparticles,and subsequent coating of a mixture of polydimethylsiloxane(PDMS)and octadecylamine(ODA)on polyester fabrics.Owing to the presence of hierarchically structured surfaces and low-surface-energy materials,the resultant reduced GO(rGO)/TiO_(2)-ODA/PDMS-coated fabrics demonstrate superhydrophobicity with a water contact angle of 159°and sliding angle of 5°.Under the synergistic effects of conduction loss,interface polarization loss,and surface roughness topography,the optimized fabrics show excellent microwave absorbing performances with a minimum reflection loss(RL_(min))of47.4 dB and a maximum effective absorption bandwidth(EAB_(max))of 7.7 GHz at a small rGO loading of 6.9 wt%.In addition,the rGO/TiO_(2)-ODA/PDMS coating was robust,and the coated fabrics could withstand repeated washing,soiling,long-term ultraviolet irradiation,and chemical attacks without losing their superhydrophobicity and MA properties.Moreover,the coating imparts self-healing properties to the fabrics.This study provides a promising and effective route for the development of robust and flexible materials with microwave-absorbing properties. 展开更多
关键词 Microwave absorption SUPERHYDROPHOBIC FABRICS COATING SELF-HEALING
下载PDF
Low-frequency and dual-band microwave absorption properties of novel VB-group disulphides(3R–TaS_(2))nanosheets
12
作者 Liquan Fan Honglin Ai +8 位作者 Meiye Jiao Yao Li Yongheng Jin Yiru Fu Jing Wang Yuwei Wang Deqing Zhang Guangping Zheng Junye Cheng 《Nano Materials Science》 EI CAS CSCD 2024年第5期635-646,共12页
As electromagnetic technology advances and demand for electronic devices grows,concerns about electromagnetic pollution intensify.This has spurred focused research on innovative electromagnetic absorbers,particularly ... As electromagnetic technology advances and demand for electronic devices grows,concerns about electromagnetic pollution intensify.This has spurred focused research on innovative electromagnetic absorbers,particularly chalcogenides,noted for their superior absorption capabilities.In this study,we successfully synthesize 3R–TaS_(2)nanosheets using a straightforward calcination method for the first time.These nanosheets exhibit significant absorption capabilities in both the C-band(4–8 GHz)and Ku-band(12–18 GHz)frequency ranges.By optimizing the calcination process,the complex permittivity of TaS_(2)is enhanced,specifically for those synthesized at 1000℃for 24 h.The nanosheets possess dual-band absorption properties,with a notable minimum reflection loss(RLmin)of41.4 dB in the C-band,and an average absorption intensity exceeding 10 dB in C-and Ku-bands,in the absorbers with a thickness of 5.6 mm.Additionally,the 3R–TaS_(2)nanosheets are demonstrated to have an effective absorption bandwidth of 5.04 GHz(3.84–8.88 GHz)in the absorbers with thicknesses of 3.5–5.5 mm.The results highlight the multiple reflection effects in 3R–TaS_(2)as caused by their stacked structures,which could be promising low-frequency absorbers. 展开更多
关键词 3R-TaS_(2) NANOSHEETS Electromagnetic wave absorption Reflection loss
下载PDF
Laser-forged transformation and encapsulation of nanoalloys:pioneering robust wideband electromagnetic wave absorption and shielding from GHz to THz
13
作者 Shizhuo Zhang Senlin Rao +4 位作者 Yunfan Li Shuai Wang Dingyue Sun Feng Liu Gary J Cheng 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第5期249-262,共14页
The emergence of the internet of things has promoted wireless communication’s evolution towards multi-band and multi-area utilization.Notably,forthcoming sixth-generation(6G)communication standards,incorporating tera... The emergence of the internet of things has promoted wireless communication’s evolution towards multi-band and multi-area utilization.Notably,forthcoming sixth-generation(6G)communication standards,incorporating terahertz(THz)frequencies alongside existing gigahertz(GHz)modes,drive the need for a versatile multi-band electromagnetic wave(EMW)absorbing and shielding material.This study introduces a pivotal advance via a new strategy,called ultrafast laser-induced thermal-chemical transformation and encapsulation of nanoalloys(LITENs).Employing multivariate metal-organic frameworks,this approach tailors a porous,multifunctional graphene-encased magnetic nanoalloy(GEMN).By fine-tuning pulse laser parameters and material components,the resulting GEMN excels in low-frequency absorption and THz shielding.GEMN achieves a breakthrough of minimum reflection loss of−50.6 dB in the optimal C-band(around 4.98 GHz).Computational evidence reinforces GEMN’s efficacy in reducing radar cross sections.Additionally,GEMN demonstrates superior electromagnetic interference shielding,reaching 98.92 dB under THz band(0.1–2 THz),with the mean value result of 55.47 dB.These accomplishments underscore GEMN’s potential for 6G signal shielding.In summary,LITEN yields the remarkable EMW controlling performance,holding promise in both GHz and THz frequency domains.This contribution heralds a paradigm shift in EM absorption and shielding materials,establishing a universally applicable framework with profound implications for future pursuits. 展开更多
关键词 laser processing multivariate metal−organic frameworks electromagnetic wave absorption
下载PDF
Enhancing Low-Frequency Microwave Absorption Through Structural Polarization Modulation of MXenes 被引量:2
14
作者 Bo Shan Yang Wang +1 位作者 Xinyi Ji Yi Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期435-452,共18页
Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over pol... Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over polarization response mecha-nisms and ambiguous resonance behavior.In this study,we pro-pose a novel approach to enhance absorption efficiency in aligned three-dimensional(3D)MXene/CNF(cellulose nanofibers)cavities by modifying polarization properties and manipulating resonance response in the 3D MXene architecture.This controlled polarization mechanism results in a significant shift of the main absorption region from the X-band to the S-band,leading to a remarkable reflection loss value of-47.9 dB in the low-frequency range.Furthermore,our findings revealed the importance of the oriented electromagnetic coupling in influencing electromagnetic response and microwave absorption properties.The present study inspired us to develop a generic strategy for low-frequency tuned absorption in the absence of magnetic element participation,while orientation-induced polarization and the derived magnetic resonance coupling are the key controlling factors of the method. 展开更多
关键词 Hierarchical structure MXene Microwave absorption LOW-FREQUENCY
下载PDF
MXene Hollow Spheres Supported by a C–Co Exoskeleton Grow MWCNTs for Efficient Microwave Absorption 被引量:2
15
作者 Ze Wu Xiuli Tan +4 位作者 Jianqiao Wang Youqiang Xing Peng Huang Bingjue Li Lei Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期76-94,共19页
High-performance microwave absorption(MA) materials must be studied immediately since electromagnetic pollution has become a problem that cannot be disregarded. A straightforward composite material, comprising hollow ... High-performance microwave absorption(MA) materials must be studied immediately since electromagnetic pollution has become a problem that cannot be disregarded. A straightforward composite material, comprising hollow MXene spheres loaded with C–Co frameworks, was prepared to develop multiwalled carbon nanotubes(MWCNTs). A high impedance and suitable morphology were guaranteed by the C–Co exoskeleton, the attenuation ability was provided by the MWCNTs endoskeleton, and the material performance was greatly enhanced by the layered core–shell structure. When the thickness was only 2.04 mm, the effective absorption bandwidth was 5.67 GHz, and the minimum reflection loss(RLmin) was-70.70 d B. At a thickness of 1.861 mm, the sample calcined at 700 ℃ had a RLmin of-63.25 d B. All samples performed well with a reduced filler ratio of 15 wt%. This paper provides a method for making lightweight core–shell composite MA materials with magnetoelectric synergy. 展开更多
关键词 MXene C-Co skeleton MWCNTS Microwave absorption
下载PDF
Tracking Regulatory Mechanism of Trace Fe on Graphene Electromagnetic Wave Absorption 被引量:3
16
作者 Kaili Zhang Yuhao Liu +5 位作者 Yanan Liu Yuefeng Yan Guansheng Ma Bo Zhong Renchao Che Xiaoxiao Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期79-96,共18页
Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the... Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials. 展开更多
关键词 Reduced graphene oxide Fe nanosheets Dielectric loss Electromagnetic wave absorption
下载PDF
Nitrogen‑Doped Magnetic‑Dielectric‑Carbon Aerogel for High‑Efficiency Electromagnetic Wave Absorption 被引量:2
17
作者 Shijie Wang Xue Zhang +5 位作者 Shuyan Hao Jing Qiao Zhou Wang Lili Wu Jiurong Liu Fenglong Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期313-327,共15页
Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facil... Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facile construction method of component design with carbon-based aerogels for high-efficiency electromagnetic wave absorption(EWA)materials with a broad effective absorption bandwidth(EAB)and strong absorption yet hits some snags.Herein,the nitrogen-doped magnetic-dielectric-carbon aerogel was obtained via ice template method followed by carbonization treatment,homogeneous and abundant nickel(Ni)and manganese oxide(MnO)particles in situ grew on the carbon aerogels.Thanks to the optimization of impedance matching of dielectric/magnetic components to carbon aerogels,the nitrogen-doped magnetic-dielectric-carbon aerogel(Ni/MnO-CA)suggests a praiseworthy EWA performance,with an ultra-wide EAB of 7.36 GHz and a minimum reflection loss(RLmin)of−64.09 dB,while achieving a specific reflection loss of−253.32 dB mm−1.Furthermore,the aerogel reveals excellent radar stealth,infrared stealth,and thermal management capabilities.Hence,the high-performance,easy fabricated and multifunctional nickel/manganese oxide/carbon aerogels have broad application aspects for electromagnetic protection,electronic devices and aerospace. 展开更多
关键词 Electromagnetic wave absorption Wide bandwidth Dielectric-magnetic synergy MULTIFUNCTION
下载PDF
Interface Engineering of Titanium Nitride Nanotube Composites for Excellent Microwave Absorption at Elevated Temperature 被引量:3
18
作者 Cuiping Li Dan Li +4 位作者 Shuai Zhang Long Ma Lei Zhang Jingwei Zhang Chunhong Gong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期147-160,共14页
Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently... Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering. 展开更多
关键词 TiN nanotubes Interface engineering Polarization loss Impedance matching Electromagnetic wave absorption performance
下载PDF
Near-ultraviolet Incoherent Broadband Cavity Enhanced Absorption Spectroscopy for OCIO and CH20 in Cl-initiated Photooxidation Experiment 被引量:1
19
作者 董美丽 赵卫雄 +6 位作者 黄明强 陈卫东 胡长进 顾学军 裴世鑫 黄伟 张为俊 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第2期133-139,I0003,共8页
Chlorine dioxide (OC10) is an important indicator for Cl-activation. The monitoring of OC10 appears to be crucial for understanding the chemistry of Cl-initialed oxidation and its impact on air quality in polluted c... Chlorine dioxide (OC10) is an important indicator for Cl-activation. The monitoring of OC10 appears to be crucial for understanding the chemistry of Cl-initialed oxidation and its impact on air quality in polluted coastal regions and industrialized areas. We report the development of a Xe arc lamp based near-ultraviolet (335-375 nm) incoherent broad- band cavity enhanced absorption spectroscopy (IBBCEAS) spectrometer for quantitative assessment of OC10 in an atmospheric simulation chamber. The important intermediate compound CH20, and other key atmospheric trace species (NO2) were also simultaneously measured. The instrumental performance shows a strong potential of this kind of IBBCEAS instrument for field and laboratory studies of atmospheric halogen chemistry. 展开更多
关键词 Incoherent broadband cavity enhanced absorption spectroscopy Near-ultraviolet OCIO CH20
下载PDF
Reinforcing effects of polypropylene on energy absorption and fracturing of cement-based tailings backfill under impact loading 被引量:1
20
作者 Jiajian Li Shuai Cao Erol Yilmaz 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期650-664,共15页
Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits su... Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill. 展开更多
关键词 cement-based tailings fiber-reinforced backfills FRACTURE energy absorption impact loading
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部