期刊文献+
共找到13,981篇文章
< 1 2 250 >
每页显示 20 50 100
Albizzia chinensis(Osbeck)Merr extract YS ameliorates ethanol-induced acute gastric ulcer injury in rats by regulating NRF2 signaling pathway
1
作者 Bo Tang Liangning Li +4 位作者 Yuanzhi Yu Guibin Wang Shuanggang Ma Shishan Yu Jianjun Zhang 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第3期275-282,共8页
Background:Around the world,there is a high incidence of gastric ulcers.YS,an extract from the Chinese herb Albizzia chinensis(Osbeck)Merr,has potential therapeutic applications for gastrointestinal diseases.Here we e... Background:Around the world,there is a high incidence of gastric ulcers.YS,an extract from the Chinese herb Albizzia chinensis(Osbeck)Merr,has potential therapeutic applications for gastrointestinal diseases.Here we elucidated the protective effect and underlying mechanism of action of YS on gastric ulcer in rats injured by ethanol.Methods:The ethanol-i nduced gastric ulcer rat model was used to assess the protective effect of YS.A pathological examination of gastric tissue was performed by H&E staining.GES-1 cells damaged by hydrogen peroxide were used to simulate oxidative damage in gastric mucosal epithelial cells.Endogenous NRF2 was knocked down using small interfering RNA.Immunoprecipitation was used to detect ubiquitination of NRF2.Co-i mmunoprecipitation was used to detect the NRF2-Keap1 interaction.Results:YS(10 and 30 mg/kg,i.g.)significantly reduced the ulcer index,decreased MDA level,and increased SOD and GSH levels in gastric tissues damaged by ethanol.YS promoted NRF2 translocation from cytoplasm to nucleus and enhanced the NQO1 and HO-1 expression levels in injured rat gastric tissue.In addition,YS regulated NQO1 and HO-1 via NRF2 in H_(2)O_(2)-i nduced oxidative injured GES-1 cells.Further studies on the underlying mechanism indicated that YS reduced the interaction between NRF2 and Keap1 and decreased ubiquitylation of NRF2,thereby increasing its stability and expression of downstream factors.NRF2 knockdown abolished the effect of YS on MDA and SOD in GES-1 cells treated with H_(2)O_(2).Conclusion:YS reduced the NRF2-Keap1 interaction,promoting NRF2 translocation into the nucleus,which increasing the transcription and translation of NQO1 and HO-1 and improved the antioxidant capacity of rat stomach. 展开更多
关键词 ANTIOXIDATIVE ethanol gastric ulcer NRF2 YS
下载PDF
Rational modulation of electronic structure in PtAuCuNi alloys boosts efficient electrocatalytic ethanol oxidation assisted with energy-saving hydrogen evolution
2
作者 Hu Yao Yinan Zheng +3 位作者 Xin Yu Songjie Hu Baolian Su Xiaohui Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期557-567,I0014,共12页
Compared to conventional electrocatalytic water splitting,electrocatalytic ethanol oxidation reaction(EOR)along with hydrogen production is considered a more energy-efficient strategy.Herein,we prepared a type of nove... Compared to conventional electrocatalytic water splitting,electrocatalytic ethanol oxidation reaction(EOR)along with hydrogen production is considered a more energy-efficient strategy.Herein,we prepared a type of novel quaternary alloy catalyst(PtAuCuNi@NF)that exhibits excellent activity for EOR(0.215 V at 10 mA cm^(-2))and hydrogen evolution reaction(HER)(7 mV at 10 mA cm^(-2)).Experimental results demonstrated that both Cu and Ni modulated the electronic environment around Pt and Au.The electron-rich active center facilitates the rapid adsorption and dissociation of reactants and intermediates for both EOR and HER.Impressively,in the ethanol-assisted overall water splitting(E-OWS),a current density of 10 mA cm^(-2)was achieved at 0.28 V.Moreover,an advanced acid-base self-powered system(A-Bsps)that can achieve a self-powered voltage of 0.59 V was assembled.Accordingly,the self-driven hydrogen production with zero external power supply was realized by integrating A-Bsps with the E-OWS equipment.The interesting results can provide a feasible strategy for designing and developing advanced nanoalloy-based materials for clean energy integration and use in various fields. 展开更多
关键词 Pt-based alloy Electronic structure ethanol oxidation Self-powered system Overall water splitting
下载PDF
Ethanol steam reforming over Ni/ZSM-5 nanosheet for hydrogen production
3
作者 Porapak Suriya Shanshan Xu +8 位作者 Shengzhe Ding Sarayute Chansai Yilai Jiao Joseph Hurd Daniel Lee Yuxin Zhang Christopher Hardacre Prasert Reubroycharoen Xiaolei Fan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期247-256,共10页
Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the ... Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the catalyst design strategies for preparing the Ni supported on ZSM-5 zeolite catalysts to promote ESR.Specifically,two-dimensional ZSM-5 nanosheet and conventional ZSM-5 crystal were used as the catalyst carriers and two synthesis strategies,i.e.,in situ encapsulation and wet impregnation method,were employed to prepare the catalysts.Based on the comparative characterization of the catalysts and comparative catalytic assessments,it was found that the combination of the in situ encapsulation synthesis and the ZSM-5 nanosheet carrier was the effective strategy to develop catalysts for promoting H_(2) production via ESR due to the improved mass transfer(through the 2-D structure of ZSM-5 nanosheet)and formation of confined small Ni nanoparticles(resulted via the in situ encapsulation synthesis).In addition,the resulting ZSM-5 nanosheet supported Ni catalyst also showed high Ni dispersion and high accessibility to Ni sites by the reactants,being able to improve the activity and stability of catalysts and suppress metal sintering and coking during ESR at high reaction temperatures.Thus,the Ni supported on ZSM-5 nanosheet catalyst prepared by encapsulation showed the stable performance with~88% ethanol conversion and~65% H_(2) yield achieved during a 48-h longevity test at 550-C. 展开更多
关键词 ZSM-5 nanosheet In situ encapsulation Ni catalyst ethanol steam reforming Hydrogen production
下载PDF
Ethanol changes Nestin-promoter induced neural stem cells to disturb newborn dendritic spine remodeling in the hippocampus of mice
4
作者 Guixiang Wang Wenjia Wang +7 位作者 Ye Zhang Xiaoying Gou Qingqing Zhang Yanmiao Huang Kuo Zhang Haotian Zhang Jingyu Yang Yuting Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期416-424,共9页
Adolescent binge drinking leads to long-lasting disorders of the adult central nervous system,particularly aberrant hippocampal neurogenesis.In this study,we applied in vivo fluorescent tracing using NestinCreERT2::Ro... Adolescent binge drinking leads to long-lasting disorders of the adult central nervous system,particularly aberrant hippocampal neurogenesis.In this study,we applied in vivo fluorescent tracing using NestinCreERT2::Rosa26-tdTomato mice and analyzed the endogenous neurogenesis lineage progression of neural stem cells(NSCs)and dendritic spine formation of newborn neurons in the subgranular zone of the dentate gyrus.We found abnormal orientation of tamoxifen-induced tdTomato+(tdTom^(+))NSCs in adult mice 2 months after treatment with EtOH(5.0 g/kg,i.p.)for 7 consecutive days.EtOH markedly inhibited tdTom^(+)NSCs activation and hippocampal neurogenesis in mouse dentate gyrus from adolescence to adulthood.EtOH(100 mM)also significantly inhibited the proliferation to 39.2%and differentiation of primary NSCs in vitro.Adult mice exposed to EtOH also exhibited marked inhibitions in dendritic spine growth and newborn neuron maturation in the dentate gyrus,which was partially reversed by voluntary running or inhibition of the mammalian target of rapamycinenhancer of zeste homolog 2 pathway.In vivo tracing revealed that EtOH induced abnormal orientation of tdTom+NSCs and spatial misposition defects of newborn neurons,thus causing the disturbance of hippocampal neurogenesis and dendritic spine remodeling in mice. 展开更多
关键词 ADOLESCENCE ADULTHOOD ethanol dentate gyrus EZH2 in vivo tracing lineage progression mTOR neural stem cell newborn dendritic spine newborn neurons
下载PDF
Antibacterial,antioxidant and antiproliferation activities of essential oils and ethanolic extracts from Chinese mugwort(Artemisia vulgaris L.)leaf in Shanxi
5
作者 Hu-Tan-Xian Zhang Feng-Ru Lyu +5 位作者 Jia-Tong He Chen-Yu Liu Zheng-Yang Zhou Rui-Jie Wu Zi-Qing Zhao He Li 《Traditional Medicine Research》 2024年第1期47-56,共10页
Background:Artemisia vulgaris,a medicinal aromatic plant,is widely used as a food item,tonic pharmaceutical,and cosmetic industry additive owing to its antibacterial,antihypertensive,hepatoprotective,antioxidant,and a... Background:Artemisia vulgaris,a medicinal aromatic plant,is widely used as a food item,tonic pharmaceutical,and cosmetic industry additive owing to its antibacterial,antihypertensive,hepatoprotective,antioxidant,and antispasmodic properties.But the effect of different geographic locations on the chemical composition and bioactivities of its extracts is unclear.Methods:Biological activities of essential oils and ethanol extracts of three varieties of Artemisia vulgaris leaves,which are grown in Shanxi province China,were studied.Results:Gas chromatography-mass spectrometry analysis revealed that the main components of essential oils were terpenes and ketones.Essential oils and ethanol extract of Artemisia vulgaris leaves possessed good antioxidant activities,and their half maximal inhibitory concentrations determined using 1,1-diphenyl-2-picrylhydrazyl and 2,2’-azinobis-(3-ethylbenzthiazoline-6-sulphonate)assays were 57.0 and 22.9μg/mL,respectively.The essential oils also exhibited remarkable antibacterial activity against three foodborne pathogenic bacterial strains.The ethanol extract presented a high anticancer activity against the MGC-803 human gastric cancer cell line.Conclusion:These biological activities were well correlated with the composition of the extract and EOs,which in turn is affected by the genetic composition of Artemisia vulgaris and geographic location and diverse climatic condition under which it is grown.These findings demonstrate the remarkable potential of Artemisia vulgaris as a valuable source of antioxidant,antibacterial,and anticancer agents. 展开更多
关键词 Artemisia vulgaris essential oils ethanol extracts ANTIOXIDANT ANTIPROLIFERATION
下载PDF
The emerging role of mesenchymal stem cell-derived extracellular vesicles to ameliorate hippocampal NLRP3 inflammation induced by binge-like ethanol treatment in adolescence
6
作者 Susana Mellado María JoséMorillo-Bargues +4 位作者 Carla Perpiñá-Clérigues Francisco García-García Victoria Moreno-Manzano Consuelo Guerri María Pascual 《Neural Regeneration Research》 SCIE CAS 2025年第4期1153-1163,共11页
Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with ... Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with neuroinflammation and brain damage.Mesenchymal stem cell-derived extracellular vesicles(MSC-EVs)have been shown to restore the neuroinflammatory response,along with myelin and synaptic structural alterations in the prefrontal cortex,and alleviate cognitive and memory dysfunctions induced by binge-like ethanol treatment in adolescent mice.Considering the therapeutic role of the molecules contained in mesenchymal stem cell-derived extracellular vesicles,the present study analyzed whether the administration of mesenchymal stem cell-derived extracellular vesicles isolated from adipose tissue,which inhibited the activation of the NLRP3 inflammasome,was capable of reducing hippocampal neuroinflammation in adolescent mice treated with binge drinking.We demonstrated that the administration of mesenchymal stem cell-derived extracellular vesicles ameliorated the activation of the hippocampal NLRP3 inflammasome complex and other NLRs inflammasomes(e.g.,pyrin domain-containing 1,caspase recruitment domain-containing 4,and absent in melanoma 2,as well as the alterations in inflammatory genes(interleukin-1β,interleukin-18,inducible nitric oxide synthase,nuclear factor-kappa B,monocyte chemoattractant protein-1,and C–X3–C motif chemokine ligand 1)and miRNAs(miR-21a-5p,miR-146a-5p,and miR-141-5p)induced by binge-like ethanol treatment in adolescent mice.Bioinformatic analysis further revealed the involvement of miR-21a-5p and miR-146a-5p with inflammatory target genes and NOD-like receptor signaling pathways.Taken together,these findings provide novel evidence of the therapeutic potential of MSC-derived EVs to ameliorate the hippocampal neuroinflammatory response associated with NLRP3 inflammasome activation induced by binge drinking in adolescence. 展开更多
关键词 ADOLESCENCE binge-like ethanol treatment extracellular vesicles hippocampus mesenchymal stem cells neuroinflammation NOD- LRR-and pyrin domain-containing protein 3(NLRP3)
下载PDF
Validation of a Method for Characterization of Ethanol in Water by HS-GC-FID to Serve the Traceability of Halal Measurements
7
作者 Adel B. Shehata Abdulrahman R. Al Askar +3 位作者 Mohammed A. Al Rasheed Abdulrahman M. Al Zahrany Fahd A. Al Kharraa Sowailem A. Al Sowailem 《Green and Sustainable Chemistry》 2024年第2期17-28,共12页
The determination of the ethanol content in food products is of fundamental importance for HALAL certification. In this work, an analytical method for the determination of ethanol in water by headspace gas chromatogra... The determination of the ethanol content in food products is of fundamental importance for HALAL certification. In this work, an analytical method for the determination of ethanol in water by headspace gas chromatography with flame ionization detector (HS-GC-FID) has been developed and validated for the use in characterization of ethanol reference materials. The validation study was carried out in the linear calibration range 100 - 1500 mg/kg using the NIST SRM 2900, nominal 95.6%. The studied performance characteristics of the method were the limit of detection, LOD, the limit of quantification LOQ, selectivity, linearity, precision, recovery and bias. The validation results showed that the method is selective, precise, accurate and free from any significant bias. The LOD and LOQ were 1.27 and 3.86 mg/kg respectively and the estimated expanded uncertainty was 2% indicating that the method is fit for the purpose of certification of ethanol in water reference materials. 展开更多
关键词 ethanol HS-GC-FID VALIDATION LINEARITY Precision Bias
下载PDF
Camalote Grass (Paspalum fasciculatum Willd) as a Sustainable Raw Material for the Production of Lignocellulosic Ethanol
8
作者 María Luz May-Reyes Cintya Valerio-Cárdenas +3 位作者 Gloria Ivette Bolio-López Manuel Mateo Hernández-Villegas Miguel Ángel Velázquez-Carmona Patricia De la Cruz-Burelo 《Journal of Sustainable Bioenergy Systems》 2024年第2期23-33,共11页
The current trend of replacing a percentage of gasoline with ethanol has promoted the development of new processes for its production from lignocellulosic biomass. This work reports the production of ethanol from the ... The current trend of replacing a percentage of gasoline with ethanol has promoted the development of new processes for its production from lignocellulosic biomass. This work reports the production of ethanol from the Camalote grass (Paspalum fasciculatum Willd). The lignocellulosic biomass was subjected to acid hydrolysis at 125C and 15 psi with H2SO4 concentrations at 5%, 10%, and 20%, obtaining an average of reducing sugars (pentoses and hexoses) from the hydrolyzed juice with 12.3%, 10%, and 17% Brix, respectively. The sugars were fermented using yeast of the Saccharomyces cerevisiae at 30C for 48 hours. Finally, the ethanol was distilled at 78C, and the average yields were obtained through analysis of variance with a 95% confidence level. The values indicate that there is a significant difference (p > 0.05), the Tukey study shows that all the % v/v averages are different from each other. For H2SO4 concentration at 5% (10.33 ± 2), H2SO4 at 10% (9.33 ± 1.8), and H2SO4 at 20% (6.33 ± 2). The acidity analysis for the ethanol obtained from each treatment gave a value of 1.8 mg/L of acetic acid in all cases. 展开更多
关键词 Lignocellulosic ethanol Lignocellulosic Biomass Camalote Grass Acid Hydrolysis Energy Crops
下载PDF
Outbreak of methanol-induced optic neuropathy in early COVID-19 era;effectiveness of erythropoietin and methylprednisolone therapy
9
作者 Seyed Ali Tabatabaei Mohammad Amini +8 位作者 Ali A Haydar Mohammad Soleimani Kasra Cheraqpour Mansoor Shahriari Hossein Hassanian-Moghaddam Nasim Zamani Mohammad Reza AkbariDepartment of Ophthalmology Eye Research Center Farabi Eye 《World Journal of Clinical Cases》 SCIE 2023年第15期3502-3510,共9页
BACKGROUND Methanol is a highly toxic,non-potable alcohol.Outbreaks of methanol toxicity occur due to its fraudulent addition to alcoholic beverages as a cheaper substitute for ethanol.Recently,alongside the coronavir... BACKGROUND Methanol is a highly toxic,non-potable alcohol.Outbreaks of methanol toxicity occur due to its fraudulent addition to alcoholic beverages as a cheaper substitute for ethanol.Recently,alongside the coronavirus disease 2019(COVID-19)pandemic,rumors circulated on social media that consuming alcohol can prevent or cure the virus,leading to a COVID-19 and methanol-induced optic neuropathy(MON)syndemic.AIM To investigate the impact of erythropoietin(EPO)on the outcomes of patients diagnosed with MON.METHODS In this prospective study,105 patients presenting with acute bilateral visual loss secondary to methanol intoxication were enrolled from March to May 2020 at Farabi Eye Hospital.A comprehensive ocular examination was conducted for all participants.Recombinant human EPO and methylprednisolone were administered intravenously to all patients for three consecutive days.RESULTS The mean age of the participants was 39.9 years(±12.6).Ninety-four patients were male and eleven were female.The mean pre-treatment best corrected visual acuity(BCVA)improved from 2.0±0.86 to 1.39±0.69 logarithm of the minimum angle of resolution post-treatment(P<0.001),with significant improvement observed in all age categories and genders(P<0.001).Visual acuity improvement was also significant regardless of whether the patient presented before or after 72 h(P<0.001),and the post-treatment BCVA remained significant at all monthly follow-up visits(P<0.001).CONCLUSION EPO and methylprednisolone therapy have been shown to be effective in improving visual outcomes in patients with MON when administrated within the first month of exposure.Public awareness efforts are necessary to prevent further outbreaks of methanol toxicity in the current COVID-19 era. 展开更多
关键词 ALCOHOL ethanol Methanol Optic neuropathy ERYTHROPOIETIN COVID-19
下载PDF
Acetic acid-assisted mild dealloying of fine CuPd nanoalloys achieving compressive strain toward high-efficiency oxygen reduction and ethanol oxidation electrocatalysis 被引量:3
10
作者 Danye Liu Yu Zhang +5 位作者 Hui Liu Peng Rao Lin Xu Dong Chen Xinlong Tian Jun Yang 《Carbon Energy》 SCIE CSCD 2023年第7期112-120,共9页
Dealloying by which the transition metal is partially or completely leached from an alloy precursor is an effective way to optimize the fundamental effects for further enhancing the electrocatalysis of a catalyst.Here... Dealloying by which the transition metal is partially or completely leached from an alloy precursor is an effective way to optimize the fundamental effects for further enhancing the electrocatalysis of a catalyst.Herein,to address the deficiencies associated with the commonly used dealloying methods,for example,electrochemical and sulfuric acid/nitric acid treatment,we report an acetic acid-assisted mild strategy to dealloy Cu atoms from the outer surface layers of CuPd alloy nanoparticles to achieve high-efficiency electrocatalysis for oxygen reduction and ethanol oxidation in an alkaline electrolyte.The leaching of Cu atoms by acetic acid exerts an additional compressive strain effect on the surface layers and exposes more active Pd atoms,which is beneficial for boosting the catalytic performance of a dealloyed catalyst for the oxygen reduction reaction(ORR)and the ethanol oxidation reaction(EOR).In particular,for ORR,the CuPd nanoparticles with a Pd/Cu molar ratio of 2:1 after acetic dealloying show a half-wave potential of 0.912 V(vs.RHE)and a mass activity of 0.213 AmgPd^(-1) at 0.9 V,respectively,while for EOR,the same dealloyed sample has a mass activity and a specific activity of 8.4 Amg^(-1) and 8.23 mA cm^(-2),respectively,much better than their dealloyed counterparts at other temperatures and commercial Pd/C as well as a Pt/C catalyst. 展开更多
关键词 compressive strain effect DEALLOYING ELECTROCATALYSIS ethanol oxidation reaction oxygen reduction reaction
下载PDF
Fecal metabolomics reveals the positive effect of ethanol extract of propolis on T2DM mice 被引量:1
11
作者 Chunmei Wang Huiting Zhao +4 位作者 Kai Xu Yali Du Jinjia Liu Jinfei Wang Yusuo Jiang 《Food Science and Human Wellness》 SCIE CSCD 2023年第1期161-172,共12页
A large number of studies have shown that propolis has positive effects in the treatment of type 2 diabetes mellitus(T2DM).However,there are have only been a few reports that are based on an ultra-high performance liq... A large number of studies have shown that propolis has positive effects in the treatment of type 2 diabetes mellitus(T2DM).However,there are have only been a few reports that are based on an ultra-high performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry(UPLC-Q-TOF-MS)analysis of the fecal metabolomics of ethanol extract of propolis(EEP)in the treatment of T2DM.The present investigation was designed to screen potential biomarkers of T2DM by the metabonomic method and to explain the possible anti-diabetes mechanism of EEP according to the changes in the biomarkers.The results showed that EEP improved the body weight(BW)of T2DM mice,lowered blood sugar levels,and significantly restored blood biochemical indicators related to T2DM,such as fasting insulin(FINS),homeostasis model assessment of insulin resistance(HOMA-IR),aspartate transaminase(AST),and alanine aminotransferase(ALT).Liver pathology showed that EEP reversed liver damage caused by T2DM.Metabolomics data identified 27 potential biomarkers in fecal samples.EEP effectively regulated the dysfunction in the metabolic pathways of glycerophospholipids,sphingolipids,riboflavins,and sterol lipids caused by T2DM.In summary,our research results revealed positive effects of EEP in the treatment of T2DM and provided potential candidate markers for further research and in the clinical treatment of T2DM. 展开更多
关键词 ethanol extract of propolis Type 2 diabetes mellitus Fecal metabolites UPLC-Q-TOF-MS Metabolomics
下载PDF
Study on Optimization of Ethanol Reflux Extraction of Phenolic Acids from Salvia miltiorrhiza 被引量:1
12
作者 Ying Gao Jinlin Wu 《Journal of Biosciences and Medicines》 CAS 2023年第1期98-105,共8页
The extraction technology of phenolic acid compounds from Salvia miltiorrhiza by ethanol reflux was studied. In this experiment, salvianolic acid B standard was used to make the standard curve. Single factor experimen... The extraction technology of phenolic acid compounds from Salvia miltiorrhiza by ethanol reflux was studied. In this experiment, salvianolic acid B standard was used to make the standard curve. Single factor experiment and orthogonal experiment were used to study the extraction of different ethanol concentrations, reflux times and material-to-liquid ratios. The OD value of salvianolic acid compounds was measured with a spectrophotometer. The extraction rate of phenolic acid compounds under different extraction conditions was calculated through a regression equation, so as to obtain the optimal conditions for the ethanol reflux extraction process of Salvia miltiorrhiza. The experimental data can provide a reference for the ethanol reflux extraction process of salvianolic acids in the industry. According to the experiment, the extraction rate of phenolic acids in Salvia miltiorrhiza was the highest when the ethanol concentration was 60%, the reflux time was 1.5 hours, and the ratio of material-to-liquid was 1:10. 展开更多
关键词 Salvia miltiorrhiza Phenolic Acid Compounds Salvianolic Acid B ethanol Reflux Orthogonal Experiment
下载PDF
Molybdenum tailored Co^(0)/Co^(2+)active pairs on a perovskite-type oxide for direct ethanol synthesis from syngas
13
作者 Yi Wu Pengfei Song +2 位作者 Ningyan Li Yanan Jiang Yuan Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期279-289,共11页
Selective synthesis of ethanol from syngas under the Co-based catalysts is still challenging due to the hard of regulating the active site Co^(0) and Co^(2+)ratio.In this work,a series of CaTi_(0.9-x)Co_(x)Mo_(0.1)O_(... Selective synthesis of ethanol from syngas under the Co-based catalysts is still challenging due to the hard of regulating the active site Co^(0) and Co^(2+)ratio.In this work,a series of CaTi_(0.9-x)Co_(x)Mo_(0.1)O_(3)(x=0,0.1-0.4)and CaTi_(0.7)Co_(0.3)O_(3) catalysts were prepared by using citric acid complexation method to promote the synthesis of ethanol.It was found that Mo species in the perovskite lattice can regulate the Co^(0) and Co^(2+)ratio through the domain-limiting effect of perovskite and the degree of Co reduction could be adjusted by changing the Co/Mo molar ratio.Among these investigated catalysts,the total selectivity of alcohols over the catalyst with the optimal Co/Mo ratio CaTi_(0.6)Co_(0.3)Mo_(0.1)O_(3) reached 39.1%,with ethanol accounting for 74.7%,which was ascribed to the moderate and tightly bound ratio of dissociative to non-dissociative adsorption sites on the surface and the balance of CH_(x)-CH_(y) coupling and C^(O) insertion. 展开更多
关键词 Direct ethanol synthesis Cobalt MOLYBDENUM SYNGAS Perovskite-type oxides
下载PDF
Rh-Cu alloy nano-dendrites with enhanced electrocatalytic ethanol oxidation activity
14
作者 Di Liu Zhejiaji Zhu +4 位作者 Jiani Li Li-Wei Chen Hui-Zi Huang Xiao-Ting Jing An-Xiang Yin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期343-349,I0008,共8页
The application of direct ethanol fuel cell(DEFC)has been bottlenecked by the sluggish ethanol oxidation reaction(EOR).Efficient electrocatalysts for the C-C bond cleavage are essential to promote EOR with high effici... The application of direct ethanol fuel cell(DEFC)has been bottlenecked by the sluggish ethanol oxidation reaction(EOR).Efficient electrocatalysts for the C-C bond cleavage are essential to promote EOR with high efficiency and C1 selectivity.Here,we prepared Rh-Cu alloy nano-dendrites(RhCu NDs)with abundant surface steps through controlled co-reduction,which exhibited significantly enhanced activity and C1 selectivity(0.47 m A cm_((ECSA))^(-2),472.4 mA mg_(Rh)^(-1),and 38.9%)than Rh NDs(0.32 mA cm((ECSA))-2,322.1 mA mgRh-1,and 21.4%)and commercially available Rh/C(0.18 mA cm_((ECSA))^(-2),265.4 mA mg_(Rh)^(-1),and 14.9%).Theoretical calculations and CO-stripping experiments revealed that alloying with Cu could modulate the surface electronic structures of Rh to resist CO-poisoning while strengthening ethanol adsorption.In situ Fourier transform infrared spectroscopy(FTIR)indicated that the surface steps on RhCu NDs further promoted the C-C bond cleavage to increase the C1 selectivity.Therefore,optimizing the surface geometric and electronic structures of nanocrystals by rational composition and morphology control can provide a promising strategy for developing practical DEFC devices. 展开更多
关键词 Rh-Cu alloy Nano-dendrites ELECTROCATALYSIS ethanol oxidation reaction In situ FTIR
下载PDF
Loading CuO on the surface of MgO with low-coordination basic O^(2-)sites for effective enhanced CO_(2) capture and photothermal synergistic catalytic reduction of CO_(2) to ethanol
15
作者 Ting Li Hongxia Guo +5 位作者 Xiao Wang Huan Wang Li Liu Wenquan Cui Xiaoran Sun Yinghua Liang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期58-67,共10页
The higher capacity of CO_(2)adsorption on the surface of magnesium oxide(MgO)with low-coordination O^(2-)sites would effectively enhance the catalytic reduction of CO_(2).Herein,a series of copper oxide(CuO)and MgO c... The higher capacity of CO_(2)adsorption on the surface of magnesium oxide(MgO)with low-coordination O^(2-)sites would effectively enhance the catalytic reduction of CO_(2).Herein,a series of copper oxide(CuO)and MgO composites with different mass ratios have been prepared by hydrothermal method and used for photothermal synergistic catalytic reduction of CO_(2)to ethanol.The catalyst with CuO mass ratio of 1.6% shows the best yield(15.17μmol·g^(-1)·h^(-1))under 3 h Xenon lamp illumination.The improved performance is attributable to the loose nano-sheet structure,uniform dispersion of active sites,the increased specific surface area,medium-strength basicity,the high separation efficiency of electrons and holes,and the formation of Mg-O-Cu species.The synthesized CuO and MgO composites with loose nano-sheet structure facilitate the diffusion of reactants CO_(2),so an excellent CO_(2)adsorption performance can be obtained.Meanwhile,the introduction of CuO in the form of bivalence provides higher specific surface area and porosity,thus obtaining more active sites.More importantly,the Mg-O-Cu species make the donation of electrons from MgO to CO_(2)easier,resulting in the breaking of the old Mg-O bond and the formation of C-O bond,thus promoting the adsorption and conversion of CO_(2)to ethanol. 展开更多
关键词 CO_(2)reduction Photothermal catalysis ethanol MGO CUO
下载PDF
Enabling high-efficiency ethanol oxidation on NiFe-LDH via deprotonation promotion and absorption inhibition
16
作者 Jiawei Shi Huawei He +6 位作者 Yinghua Guo Feng Ji Jing Li Yi Zhang Chengwei Deng Liyuan Fan Weiwei Cai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期76-82,I0004,共8页
Nucleophile oxidation reaction(NOR), represented by ethanol oxidation reaction(EOR), is a promising pathway to replace oxygen evolution reaction(OER). EOR can effectively reduce the driving voltage of hydrogen product... Nucleophile oxidation reaction(NOR), represented by ethanol oxidation reaction(EOR), is a promising pathway to replace oxygen evolution reaction(OER). EOR can effectively reduce the driving voltage of hydrogen production in direct water splitting. In this work, large current and high efficiency of EOR on a Ni, Fe layered double hydroxide(NiFe-LDH) catalyst were simultaneously achieved by a facile fluorination strategy. F in NiFe-LDH can reduce the activation energy of the dehydrogenation reaction, thus promoting the deprotonation process of NiFe-LDH to achieve a lower EOR onset potential. It also weakens the absorption of OH-and nucleophile electrooxidation products on the surface of NiFe-LDH at a higher potential, achieving a high current density and EOR selectivity, according to density functional theory calculations. Based on our experiment results, the optimized fluorinated NiFe-LDH catalyst achieves a low potential of 1.386 V to deliver a 10 mA cm^(-2)EOR. Moreover, the Faraday efficiency is greater than 95%, with a current density ranging from 10 to 250 mA cm^(-2). This work provides a promising pathway for an efficient and cost-effective NOR catalyst design for economic hydrogen production. 展开更多
关键词 ethanol oxidation reaction High efficiency Ni Fe layered double hydroxide Fluorination strategy DEPROTONATION
下载PDF
Responses of phytoplankton and its satellite bacteria to exogenous ethanol
17
作者 Rediat ABATE Buce Hanoch HETHARUA +9 位作者 Vishal PATIL Daner LIN Demeke KIFLE Junrong LIANG Changping CHEN Lin SUN Shuh-Ji KAO Yonghong BI Bangqin HUANG Yahui GAO 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第1期203-214,共12页
The response of phytoplankton and its satellite bacteria to various concentrations(0.01%-10%v/v)of ethanol is studied.To elucidate the effect of ethanol,single-strains of phytoplankton(SSP)culture,pure strains of sate... The response of phytoplankton and its satellite bacteria to various concentrations(0.01%-10%v/v)of ethanol is studied.To elucidate the effect of ethanol,single-strains of phytoplankton(SSP)culture,pure strains of satellite bacteria isolated from nonaxenic SSP cultures,and Escherichia coli were screened.Results indicate that ethanol could promote the growth and photo synthetic efficiency(F_(v)/F_(m))of S SP at 0.01%and the growth of satellite bacteria at 0.01%-1%.Nevertheless,ethanol inhibited the growth and F_(v)/F_(m)of SSP at 0.1%-1%,and killed bacteria and SSP at 10% concentration.Further investigation on a satellite bacterium(Mameliella alba)revealed that ethanol promotes growth by serving as a growth stimulant rather than a metabolic carbon source.The 16 S rRNA gene amplicon indicated that all nonaxenic S SP cultures harbor distinct satellite bacteria communities where the SSP culture of Skeletonema costatum,Phaeodactylum tricornutum,and Dunaliella bardawil were dominated by bacteria genera of Marivita(~80%),Dinoroseobacter(~47%),and Halomonas(~87%),respectively,indicating that every SSP cultures have their own distinct satellite bacterial community.The bacteria family Rhodobacteraceae was dominant in the two marine diatoms,whereas Halomonadaceae was dominant in the saline green microalga.Compared to their respective controls,the supply of 0.5% ethanol to SSP cultures promoted the growth of the satellite bacteria but did not cause a significant difference in species composition of satellite bacteria.Therefore,a low concentration of ethanol can promote the growth of bacteria in a non-selective way.This study enriched our knowledge about the effect of ethanol on aquatic microbes and provided a baseline for basic and applied biotechnological re search in the aquatic environment in the future. 展开更多
关键词 aquatic microbes bacteria diversity ethanol effect growth inhibition growth stimulation
下载PDF
Noncovalent interactions on the electrocatalytic oxidation of ethanol on a Pt/C electrocatalyst
18
作者 Chenjie Han Yeqing Lyu +4 位作者 Shaona Wang Biao Liu Yi Zhang Jun Lu Hao Du 《Carbon Energy》 SCIE EI CAS CSCD 2023年第9期113-123,共11页
Due to their environmentally friendly nature and high energy density,direct ethanol fuel cells have attracted extensive research attention in recent decades.However,the actual Faraday efficiency of the ethanol oxidati... Due to their environmentally friendly nature and high energy density,direct ethanol fuel cells have attracted extensive research attention in recent decades.However,the actual Faraday efficiency of the ethanol oxidation reaction(EOR)is much lower than its theoretical value and the reaction kinetics of the EOR is sluggish due to insufficient active sites on the electrocatalyst surface.Pt/C is recognized as one of the most promising electrocatalysts for the EOR.Thus,the microscopic interfacial reaction mechanisms of the EOR on Pt/C were systematically studied in this work.In metal hydroxide solutions,hydrated alkali cations were found to bind with OH_(ad)through noncovalent interactions to form clusters and occupy the active sites on the Pt/C electrocatalyst surface,thus resulting in low Faraday efficiency and sluggish kinetics of the EOR.To reduce the negative effect of the noncovalent interactions on the EOR,a shield was made on the electrocatalyst surface using 4-trifluoromethylphenyl,resulting in twice the EOR catalytic reactivity of Pt/C. 展开更多
关键词 ethanol electro‐oxidation Faraday efficiency KINETICS modification of electrocatalyst noncovalent interactions
下载PDF
Solid-state Al-air battery with an ethanol gel electrolyte
19
作者 Yifei Wang Wending Pan +3 位作者 Kee Wah Leong Shijing Luo Xiaolong Zhao Dennis Y.C.Leung 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期1117-1127,共11页
Hydrogel electrolyte is especially suitable for solid-state Al-air batteries targeted for various portable applications, which may, however, lead to continuous Al corrosion during battery standby. To tackle this issue... Hydrogel electrolyte is especially suitable for solid-state Al-air batteries targeted for various portable applications, which may, however, lead to continuous Al corrosion during battery standby. To tackle this issue, an ethanol gel electrolyte is developed for Al-air battery for the first time in this work, by using KOH as solute and polyethylene oxide as gelling agent. The ethanol gel is found to effectively inhibit Al corrosion compared with the water gel counterpart, leading to stable Al storage. When assembled into an Al-air battery, the ethanol gel electrolyte achieves a much improved discharge lifetime and specific capacity, which are 5.3 and 4.1 times of the water gel electrolyte at 0.1 mA cm^(-2), respectively.By studying the gel properties, it is found that a lower ethanol purity can improve the battery power output, but at the price of decreased discharge efficiency. On the contrary, a higher polymer concentration will decrease the power output, but can bring extra benefit to the discharge efficiency. As for the gel thickness, a moderate value of 1 mm is preferred to balance the power output and energy efficiency. Finally, to cater the increasing market of flexible electronics, a flexible Al-air battery is developed by impregnating the ethanol gel into a paper substrate, which can function normally even under serious deformation or damage. 展开更多
关键词 Al-air battery Gel electrolyte ethanol gel Al corrosion Polyethylene oxide
下载PDF
Semi-Automated Enzymatic Determination of Ethanol in Beverages: Collaborative Study for RIDA®CUBE Ethanol
20
作者 Markus Lacorn Thomas Hektor 《Food and Nutrition Sciences》 CAS 2023年第2期90-100,共11页
Easy and quick methods to quantify ethanol reliably in beverages are always important. In 2022, the Enzytec<sup>TM</sup> Liquid Ethanol test kit was approved as AOAC Official Method<sup>SM</sup>... Easy and quick methods to quantify ethanol reliably in beverages are always important. In 2022, the Enzytec<sup>TM</sup> Liquid Ethanol test kit was approved as AOAC Official Method<sup>SM</sup> 2017.07 Final Action after a collaborative study was conducted with different beverages such as kombucha, juices, and beer. During set-up of this collaborative test, small sized companies asked to include the RIDA<sup>&reg;</sup>CUBE Ethanol/RIDA<sup>&reg;</sup>CUBE SCAN device since it is easy to use, suitable for a few samples only and contains the identical reagents as the Enzytec<sup>TM</sup> Liquid system. It is applicable to quantify ethanol in diluted kombucha, fruit juices, and alcohol-free beer samples around 0.5% alcohol-by-volume within 12 min. The overall relative reproducibility standard deviation across a wide concentration range for kombucha, was calculated to be 6.29%. Analysis of juices and beer showed an overall higher variation with an estimated overall RSD(R) value by regression of 14.4%. The data obtained by this collaborative study show that the RIDA<sup>&reg;</sup>CUBE Ethanol in combination with the RIDA<sup>&reg;</sup>CUBE SCAN device is suitable to quantify ethanol from matrices representing important alcohol-free liquid food categories. 展开更多
关键词 ethanol Enzymatic Analysis Beverages AUTOMATION REPRODUCIBILITY Collaborative Test
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部