Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop pr...Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop procedure, the computational expense of RBDO is normally very high. Current RBDO research focuses on problems with explicitly expressed performance functions and readily available gradients. This paper addresses a more challenging type of RBDO problem in which the performance functions are computation intensive. These computation intensive functions are often considered as a "black-box" and their gradients are not available or not reliable. On the basis of the reliable design space (RDS) concept proposed earlier by the authors, this paper proposes a Reliable Space Pursuing (RSP) approach, in which RDS is first identified and then gradually refined while optimization is performed. It fundamentally avoids the nested optimization and probabilistic assessment loop. Three well known RBDO problems from the literature are used for testing and demonstrating the effectiveness of the proposed RSP method.展开更多
Selection of test cases plays a key role in improving testing efficiency. Black-box testing is an important way of testing, and its validity lies on the selection of test cases in some sense. A reasonable and effectiv...Selection of test cases plays a key role in improving testing efficiency. Black-box testing is an important way of testing, and its validity lies on the selection of test cases in some sense. A reasonable and effective method about the selection and generation of test cases is urgently needed. This letter first introduces some usualmethods on black-box test case generation,then proposes a new algorithm based on interface parameters and discusses its properties, finally shows the effectiveness of the algorithm.展开更多
Deep learning networks are widely used in various systems that require classification.However,deep learning networks are vulnerable to adversarial attacks.The study on adversarial attacks plays an important role in de...Deep learning networks are widely used in various systems that require classification.However,deep learning networks are vulnerable to adversarial attacks.The study on adversarial attacks plays an important role in defense.Black-box attacks require less knowledge about target models than white-box attacks do,which means black-box attacks are easier to launch and more valuable.However,the state-of-arts black-box attacks still suffer in low success rates and large visual distances between generative adversarial images and original images.This paper proposes a kind of fast black-box attack based on the cross-correlation(FBACC)method.The attack is carried out in two stages.In the first stage,an adversarial image,which would be missclassified as the target label,is generated by using gradient descending learning.By far the image may look a lot different than the original one.Then,in the second stage,visual quality keeps getting improved on the condition that the label keeps being missclassified.By using the cross-correlation method,the error of the smooth region is ignored,and the number of iterations is reduced.Compared with the proposed black-box adversarial attack methods,FBACC achieves a better fooling rate and fewer iterations.When attacking LeNet5 and AlexNet respectively,the fooling rates are 100%and 89.56%.When attacking them at the same time,the fooling rate is 69.78%.FBACC method also provides a new adversarial attack method for the study of defense against adversarial attacks.展开更多
The multiplicity distribution (P(nch)) of charged particles produced in a high energy collision is a key quantity to understand the mechanism of multiparticle production. This paper describes the novel application of ...The multiplicity distribution (P(nch)) of charged particles produced in a high energy collision is a key quantity to understand the mechanism of multiparticle production. This paper describes the novel application of an artificial neural network (ANN) black-box modeling approach based on the cascade correlation (CC) algorithm formulated to calculate and predict multiplicity distribution of proton-proton (antiproton) (PP and PP ) inelastic interactions full phase space at a wide range of center-mass of energy . In addition, the formulated cascade correlation neural network (CCNN) model is used to empirically calculate the average multiplicity distribution nch> as a function of . The CCNN model was designed based on available experimental data for = 30.4 GeV, 44.5 GeV, 52.6 GeV, 62.2 GeV, 200 GeV, 300 GeV, 540 GeV, 900 GeV, 1000 GeV, 1800 GeV, and 7 TeV. Our obtained empirical results for P(nch), as well as nch> for (PP and PP) collisions are compared with the corresponding theoretical ones which obtained from other models. This comparison shows a good agreement with the available experimental data (up to 7 TeV) and other theoretical ones. At full large hadron collider (LHC) energy ( = 14 TeV) we have predicted P(nch) and nch> which also, show a good agreement with different theoretical models.展开更多
Membership inference attacks on machine learning models have drawn significant attention.While current research primarily utilizes shadow modeling techniques,which require knowledge of the target model and training da...Membership inference attacks on machine learning models have drawn significant attention.While current research primarily utilizes shadow modeling techniques,which require knowledge of the target model and training data,practical scenarios involve black-box access to the target model with no available information.Limited training data further complicate the implementation of these attacks.In this paper,we experimentally compare common data enhancement schemes and propose a data synthesis framework based on the variational autoencoder generative adversarial network(VAE-GAN)to extend the training data for shadow models.Meanwhile,this paper proposes a shadow model training algorithm based on adversarial training to improve the shadow model's ability to mimic the predicted behavior of the target model when the target model's information is unknown.By conducting attack experiments on different models under the black-box access setting,this paper verifies the effectiveness of the VAE-GAN-based data synthesis framework for improving the accuracy of membership inference attack.Furthermore,we verify that the shadow model,trained by using the adversarial training approach,effectively improves the degree of mimicking the predicted behavior of the target model.Compared with existing research methods,the method proposed in this paper achieves a 2%improvement in attack accuracy and delivers better attack performance.展开更多
As a wearable robot,an exoskeleton provides a direct transfer of mechanical power to assist or augment the wearer’s movement with an anthropomorphic configuration.When an exoskeleton is used to facilitate the wearer...As a wearable robot,an exoskeleton provides a direct transfer of mechanical power to assist or augment the wearer’s movement with an anthropomorphic configuration.When an exoskeleton is used to facilitate the wearer’s movement,a motion generation process often plays an important role in high-level control.One of the main challenges in this area is to generate in real time a reference trajectory that is parallel with human intention and can adapt to different situations.In this paper,we first describe a novel motion modeling method based on probabilistic movement primitive(ProMP)for a lower limb exoskeleton,which is a new and powerful representative tool for generating motion trajectories.To adapt the trajectory to different situations when the exoskeleton is used by different wearers,we propose a novel motion learning scheme based on black-box optimization(BBO)PIBB combined with ProMP.The motion model is first learned by ProMP offline,which can generate reference trajectories for use by exoskeleton controllers online.PIBB is adopted to learn and update the model for online trajectory generation,which provides the capability of adaptation of the system and eliminates the effects of uncertainties.Simulations and experiments involving six subjects using the lower limb exoskeleton HEXO demonstrate the effectiveness of the proposed methods.展开更多
Water droplets cause corrosion and erosion,condensation loss,and thermal efficiency reduction in low-pressure steam turbines.In this study,multi-objective optimization was carried out using the black-box method throug...Water droplets cause corrosion and erosion,condensation loss,and thermal efficiency reduction in low-pressure steam turbines.In this study,multi-objective optimization was carried out using the black-box method through the automatic linking of a genetic algorithm(GA)and a computational fluid dynamics(CFD)code to find the optimal values of two design variables(inlet stagnation temperature and cascade pressure ratio)to reduce wetness in the last stages of turbines.The wet steam flow numerical model was used to calculate the optimization parameters,including wetness fraction rate,mean droplet radius,erosion rate,condensation loss rate,kinetic energy rate,and mass flow rate.Examining the validation results showed a good agreement between the experimental data and the numerical outcomes.According to the optimization results,the inlet stagnation temperature and the cascade pressure ratio were proposed to be 388.67(K)and 0.55(-),respectively.In particular,the suggested optimaltemperature and pressure ratio improved the liquid mass fraction and mean droplet radius by about 32%and 29%,respectively.Also,in the identified optimal operating state,the ratios of erosion,condensation loss,and kinetic energy fell by 76%,32.7%,and 15.85%,respectively,while the mass flow rate ratio rose by 0.68%.展开更多
传统的文本生成对抗方法主要采用位置置换、字符替换等方式,耗费时间较长且效果较差。针对以上问题,该文提出一种基于改进蚁群算法的对抗样本生成模型IGAS(Improved ant colony algorithm to Generate Adversarial Sample),利用蚁群算...传统的文本生成对抗方法主要采用位置置换、字符替换等方式,耗费时间较长且效果较差。针对以上问题,该文提出一种基于改进蚁群算法的对抗样本生成模型IGAS(Improved ant colony algorithm to Generate Adversarial Sample),利用蚁群算法的特点生成对抗样本,并利用类形字进行优化。首先,构建城市节点群,利用样本中的词构建城市节点群;然后对原始输入样本,利用改进的蚁群算法生成对抗样本;再针对生成结果,通过构建的中日类形字典进行字符替换,生成最终的对抗样本;最后在黑盒模式下进行对抗样本攻击实验。实验在情感分类、对话摘要生成、因果关系抽取等多种领域验证了该方法的有效性。展开更多
基金supported by Natural Science and Engineering Research Council (NSERC) of Canada
文摘Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop procedure, the computational expense of RBDO is normally very high. Current RBDO research focuses on problems with explicitly expressed performance functions and readily available gradients. This paper addresses a more challenging type of RBDO problem in which the performance functions are computation intensive. These computation intensive functions are often considered as a "black-box" and their gradients are not available or not reliable. On the basis of the reliable design space (RDS) concept proposed earlier by the authors, this paper proposes a Reliable Space Pursuing (RSP) approach, in which RDS is first identified and then gradually refined while optimization is performed. It fundamentally avoids the nested optimization and probabilistic assessment loop. Three well known RBDO problems from the literature are used for testing and demonstrating the effectiveness of the proposed RSP method.
基金Supported in part by the National Natural Science Foundation of China (NSFC)(60073012),Natural Science Foundation of Jiangsu(BK2001004)
文摘Selection of test cases plays a key role in improving testing efficiency. Black-box testing is an important way of testing, and its validity lies on the selection of test cases in some sense. A reasonable and effective method about the selection and generation of test cases is urgently needed. This letter first introduces some usualmethods on black-box test case generation,then proposes a new algorithm based on interface parameters and discusses its properties, finally shows the effectiveness of the algorithm.
基金This work is supported by the National Key R&D Program of China(2017YFB0802703)Research on the education mode for complicate skill students in new media with cross specialty integration(22150117092)+3 种基金Major Scientific and Technological Special Project of Guizhou Province(20183001)Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(2018BDKFJJ014)Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(2018BDKFJJ019)Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(2018BDKFJJ022).
文摘Deep learning networks are widely used in various systems that require classification.However,deep learning networks are vulnerable to adversarial attacks.The study on adversarial attacks plays an important role in defense.Black-box attacks require less knowledge about target models than white-box attacks do,which means black-box attacks are easier to launch and more valuable.However,the state-of-arts black-box attacks still suffer in low success rates and large visual distances between generative adversarial images and original images.This paper proposes a kind of fast black-box attack based on the cross-correlation(FBACC)method.The attack is carried out in two stages.In the first stage,an adversarial image,which would be missclassified as the target label,is generated by using gradient descending learning.By far the image may look a lot different than the original one.Then,in the second stage,visual quality keeps getting improved on the condition that the label keeps being missclassified.By using the cross-correlation method,the error of the smooth region is ignored,and the number of iterations is reduced.Compared with the proposed black-box adversarial attack methods,FBACC achieves a better fooling rate and fewer iterations.When attacking LeNet5 and AlexNet respectively,the fooling rates are 100%and 89.56%.When attacking them at the same time,the fooling rate is 69.78%.FBACC method also provides a new adversarial attack method for the study of defense against adversarial attacks.
文摘The multiplicity distribution (P(nch)) of charged particles produced in a high energy collision is a key quantity to understand the mechanism of multiparticle production. This paper describes the novel application of an artificial neural network (ANN) black-box modeling approach based on the cascade correlation (CC) algorithm formulated to calculate and predict multiplicity distribution of proton-proton (antiproton) (PP and PP ) inelastic interactions full phase space at a wide range of center-mass of energy . In addition, the formulated cascade correlation neural network (CCNN) model is used to empirically calculate the average multiplicity distribution nch> as a function of . The CCNN model was designed based on available experimental data for = 30.4 GeV, 44.5 GeV, 52.6 GeV, 62.2 GeV, 200 GeV, 300 GeV, 540 GeV, 900 GeV, 1000 GeV, 1800 GeV, and 7 TeV. Our obtained empirical results for P(nch), as well as nch> for (PP and PP) collisions are compared with the corresponding theoretical ones which obtained from other models. This comparison shows a good agreement with the available experimental data (up to 7 TeV) and other theoretical ones. At full large hadron collider (LHC) energy ( = 14 TeV) we have predicted P(nch) and nch> which also, show a good agreement with different theoretical models.
文摘Membership inference attacks on machine learning models have drawn significant attention.While current research primarily utilizes shadow modeling techniques,which require knowledge of the target model and training data,practical scenarios involve black-box access to the target model with no available information.Limited training data further complicate the implementation of these attacks.In this paper,we experimentally compare common data enhancement schemes and propose a data synthesis framework based on the variational autoencoder generative adversarial network(VAE-GAN)to extend the training data for shadow models.Meanwhile,this paper proposes a shadow model training algorithm based on adversarial training to improve the shadow model's ability to mimic the predicted behavior of the target model when the target model's information is unknown.By conducting attack experiments on different models under the black-box access setting,this paper verifies the effectiveness of the VAE-GAN-based data synthesis framework for improving the accuracy of membership inference attack.Furthermore,we verify that the shadow model,trained by using the adversarial training approach,effectively improves the degree of mimicking the predicted behavior of the target model.Compared with existing research methods,the method proposed in this paper achieves a 2%improvement in attack accuracy and delivers better attack performance.
基金Project supported by the National Natural Science Foundation of China(No.U21A20120)。
文摘As a wearable robot,an exoskeleton provides a direct transfer of mechanical power to assist or augment the wearer’s movement with an anthropomorphic configuration.When an exoskeleton is used to facilitate the wearer’s movement,a motion generation process often plays an important role in high-level control.One of the main challenges in this area is to generate in real time a reference trajectory that is parallel with human intention and can adapt to different situations.In this paper,we first describe a novel motion modeling method based on probabilistic movement primitive(ProMP)for a lower limb exoskeleton,which is a new and powerful representative tool for generating motion trajectories.To adapt the trajectory to different situations when the exoskeleton is used by different wearers,we propose a novel motion learning scheme based on black-box optimization(BBO)PIBB combined with ProMP.The motion model is first learned by ProMP offline,which can generate reference trajectories for use by exoskeleton controllers online.PIBB is adopted to learn and update the model for online trajectory generation,which provides the capability of adaptation of the system and eliminates the effects of uncertainties.Simulations and experiments involving six subjects using the lower limb exoskeleton HEXO demonstrate the effectiveness of the proposed methods.
基金This research was supported by Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea.(NRF-2022H1D3A2A02090885).
文摘Water droplets cause corrosion and erosion,condensation loss,and thermal efficiency reduction in low-pressure steam turbines.In this study,multi-objective optimization was carried out using the black-box method through the automatic linking of a genetic algorithm(GA)and a computational fluid dynamics(CFD)code to find the optimal values of two design variables(inlet stagnation temperature and cascade pressure ratio)to reduce wetness in the last stages of turbines.The wet steam flow numerical model was used to calculate the optimization parameters,including wetness fraction rate,mean droplet radius,erosion rate,condensation loss rate,kinetic energy rate,and mass flow rate.Examining the validation results showed a good agreement between the experimental data and the numerical outcomes.According to the optimization results,the inlet stagnation temperature and the cascade pressure ratio were proposed to be 388.67(K)and 0.55(-),respectively.In particular,the suggested optimaltemperature and pressure ratio improved the liquid mass fraction and mean droplet radius by about 32%and 29%,respectively.Also,in the identified optimal operating state,the ratios of erosion,condensation loss,and kinetic energy fell by 76%,32.7%,and 15.85%,respectively,while the mass flow rate ratio rose by 0.68%.
文摘传统的文本生成对抗方法主要采用位置置换、字符替换等方式,耗费时间较长且效果较差。针对以上问题,该文提出一种基于改进蚁群算法的对抗样本生成模型IGAS(Improved ant colony algorithm to Generate Adversarial Sample),利用蚁群算法的特点生成对抗样本,并利用类形字进行优化。首先,构建城市节点群,利用样本中的词构建城市节点群;然后对原始输入样本,利用改进的蚁群算法生成对抗样本;再针对生成结果,通过构建的中日类形字典进行字符替换,生成最终的对抗样本;最后在黑盒模式下进行对抗样本攻击实验。实验在情感分类、对话摘要生成、因果关系抽取等多种领域验证了该方法的有效性。