An improved version of the regular boundary element method, the artificial boundary node approach, is derived. A simple contact algorithm is designed and implemented into the direct boundary element, regular boundary ...An improved version of the regular boundary element method, the artificial boundary node approach, is derived. A simple contact algorithm is designed and implemented into the direct boundary element, regular boundary element and artificial boundary node approaches. The exisiting and derived approaches are tested using some case studies. The results of the artificial boundary node approach are compared with those of the existing boundary element program, the regular element approach, ANSYS and analytical solution whenever possible. The results show the effectiveness of the artificial boundary node approach for a wider range of boundary offsets.展开更多
Contact problems and elastoplastic problems are unified and described by the variational inequality formulation, in which the constraints of the constitutional relations for elastoplastic materials and the contact con...Contact problems and elastoplastic problems are unified and described by the variational inequality formulation, in which the constraints of the constitutional relations for elastoplastic materials and the contact conditions are relaxed totally. First, the coerciveness of the functional is proved. Then the uniqueness of the solution of variational inequality for the elastoplastic contact problems is demonstrated. The existence of the solution is also demonstrated according to the sufficient conditions for the solution of the elliptic variational inequality. A mathematical foundation is developed for the variational extremum principle of elastoplastic contact problems. The developed variational extremum forms can give an effective and strict mathematical modeling to solve contact problems with mathematical programming.展开更多
This paper is intended to be a first step towards the continuous dependence of dynamical contact problems on the initial data as well as the uniqueness of a solution. Moreover,it provides the basis for a proof of the ...This paper is intended to be a first step towards the continuous dependence of dynamical contact problems on the initial data as well as the uniqueness of a solution. Moreover,it provides the basis for a proof of the convergence of popular time integration schemes as the Newmark method.We study a frictionless dynamical contact problem between both linearly elastic and viscoelastic bodies which is formulated via the Signorini contact conditions.For viscoelastic materials fulfilling the Kelvin-Voigt constitutive law,we find a characterization of the class of problems which satisfy a perturbation result in a non-trivial mix of norms in function space.This characterization is given in the form of a stability condition on the contact stresses at the contact boundaries.Furthermore,we present perturbation results for two well-established approximations of the classical Signorini condition:The Signorini condition formulated in velocities and the model of normal compliance,both satisfying even a sharper version of our stability condition.展开更多
Two kinds of contact problems, i.e., the frictional contact problem and the adhesive contact problem, in three-dimensional (3D) icosahedral quasicrystals are dis- cussed by a complex variable function method. For th...Two kinds of contact problems, i.e., the frictional contact problem and the adhesive contact problem, in three-dimensional (3D) icosahedral quasicrystals are dis- cussed by a complex variable function method. For the frictional contact problem, the contact stress exhibits power singularities at the edge of the contact zone. For the adhe- sive contact problem, the contact stress exhibits oscillatory singularities at the edge of the contact zone. The numerical examples show that for the two kinds of contact problems, the contact stress exhibits singularities, and reaches the maximum value at the edge of the contact zone. The phonon-phason coupling constant has a significant effect on the contact stress intensity, while has little impact on the contact stress distribution regu- lation. The results are consistent with those of the classical elastic materials when the phonon-phason coupling constant is 0. For the adhesive contact problem, the indentation force has positive correlation with the contact displacement, but the phonon-phason cou- pling constant impact is barely perceptible. The validity of the conclusions is verified.展开更多
Several effective numerical methods for solving the elasto-plastic contact problems with friction are pres- ented.First,a direct substitution method is employed to impose the contact constraint conditions on condensed...Several effective numerical methods for solving the elasto-plastic contact problems with friction are pres- ented.First,a direct substitution method is employed to impose the contact constraint conditions on condensed finite ele- ment equations,thus resulting in a reduction by half in the dimension of final governing equations.Second,an algorithm composed of contact condition probes and elasto-plastic iterations is utilized to solve the governing equation,which distinguishes two kinds of nonlinearities,and makes the solution unique.In addition,Positive-Negative Sequence Modifica- tion Method is used to condense the finite element equations of each substructure and an analytical integration is intro- duced to determine the elasto-plastic status after each time step or each iteration,hence the computational efficiency is en- hanced to a great extent.Finally,several test and practical examples are pressented showing the validity and versatility of these methods and algorithms.展开更多
A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle ...A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle and parametric quadratic programming method were applied to the analysis of three-dimensional frictional contact problem. The solution of the contact problem was finally reduced to a linear complementarity problem, which was reformulated as a system of nonsmooth equations via an NCP-function. A smoothing approximation to the nonsmooth equations was given by the aggregate function. A Newton method was used to solve the resulting smoothing nonlinear equations. The algorithm presented is easy to understand and implement. The reliability and efficiency of this algorithm are demonstrated both by the numerical experiments of LCP in mathematical way and the examples of contact problems in mechanics.展开更多
The coupling of the local contact problems between the components and the deformation of the components in the mechanical system were discovered.A series of coordinate systems have been founded to describe the mechani...The coupling of the local contact problems between the components and the deformation of the components in the mechanical system were discovered.A series of coordinate systems have been founded to describe the mechanical system with the contact problems.The method of isolating the boundary of contact body from others has been used to describe the constraint between the contacting points.A more generalized static mechanics model of the mechanical system with the contact problems has been founded through the principle of virtual work.As an application,the model was used to study the multi_teeth engagement problems in the inner meshed planet gear systems.The stress distribution of contact gears was got.A test has verified that the static contact model and the computational method are right.展开更多
Three dimensional frictional contact problems are formulated as linear complementarity problems based on the parametric variational principle. Two aggregate-functionbased algorithms for solving complementarity problem...Three dimensional frictional contact problems are formulated as linear complementarity problems based on the parametric variational principle. Two aggregate-functionbased algorithms for solving complementarity problems are proposed. One is called the self-adjusting interior point algorithm, the other is called the aggregate function smoothing algorithm. Numerical experiment shows the efficiency of the proposed two algorithms.展开更多
This paper develops and analyzes multigrid semismooth Newton methods for a class of inequality-constrained optimization problems in function space which are motivated by and include linear elastic contact problems of ...This paper develops and analyzes multigrid semismooth Newton methods for a class of inequality-constrained optimization problems in function space which are motivated by and include linear elastic contact problems of Signorini type. We show that after a suitable Moreau-Yosida type regularization of the problem superlinear local convergence is obtained for a class of semismooth Newton methods. In addition, estimates for the order of tile error introduced by the regularization are derived. The main part of the paper is devoted to the analysis of a multilevel preconditioner for the semismooth Newton system. We prove a rigorous bound for the contraction rate of the multigrid cycle which is robust with respect to sufficiently small regularization parameters and the number of grid levels. Moreover, it applies to adaptively refined grids. The paper concludes with numerical results.展开更多
In this paper,two kinds of contact problems in 2-D dodecagonal quasicrystals were discussed using the complex variable function method:one is the finite frictional contact problem,the other is the adhesive contact pr...In this paper,two kinds of contact problems in 2-D dodecagonal quasicrystals were discussed using the complex variable function method:one is the finite frictional contact problem,the other is the adhesive contact problem.The analytic expressions of contact stresses in the phonon and phason fields were obtained for a flat rigid punch,which showed that:(1) for the finite frictional contact problem,the contact stress exhibited power-type singularities at the edge of the contact zone;(2) for the adhesive contact problem,the contact stress exhibited oscillatory singularities at the edge of the contact zone.The distribution regulation of contact stress under punch was illustrated;and the low friction property of quasicrystals was verified graphically.展开更多
As suggested by the title, this extensive book is concerned with crack and contact prob- lems in linear elasticity. However, in general, it is intended for a wide audience ranging from engineers to mathematical physic...As suggested by the title, this extensive book is concerned with crack and contact prob- lems in linear elasticity. However, in general, it is intended for a wide audience ranging from engineers to mathematical physicists. Indeed, numerous problems of both academic and tech- nological interest in electro-magnetics, acoustics, solid and fluid dynamics, etc. are actually related to each other and governed by the same mixed boundary value problems from a unified mathematical standpoint展开更多
In Order to study the frictional contact problems of the elastoplastic beam theory,an extended two-dimensional beam model is established, and a second order nonlinear equilibrium problem with both internal and exter...In Order to study the frictional contact problems of the elastoplastic beam theory,an extended two-dimensional beam model is established, and a second order nonlinear equilibrium problem with both internal and external complementarity conditions is proposed. The external complementarity condition provides the free boundary condition. while the internal complemententarity condition gives the interface of the elastic and plastic regions. We prove that this bicomplementarity problem is equivalent to a nonlinear variational inequality The dual variational inequality is also developed.It is shown that the dual variational inequality is much easier than the primalvariational problem. Application to limit analysis is illustrated.展开更多
Based on the numerical governing formulation and non-linear complementary conditions of contact and impact problems, a reduced projection augmented Lagrange bi- conjugate gradient method is proposed for contact and im...Based on the numerical governing formulation and non-linear complementary conditions of contact and impact problems, a reduced projection augmented Lagrange bi- conjugate gradient method is proposed for contact and impact problems by translating non-linear complementary conditions into equivalent formulation of non-linear program- ming. For contact-impact problems, a larger time-step can be adopted arriving at numer- ical convergence compared with penalty method. By establishment of the impact-contact formulations which are equivalent with original non-linear complementary conditions, a reduced projection augmented Lagrange bi-conjugate gradient method is deduced to im- prove precision and efficiency of numerical solutions. A numerical example shows that the algorithm we suggested is valid and exact.展开更多
This paper studies the prescribed contact angle boundary value problem of a certain type of mean curvature equation.Applying the maximum principle and the moving frame method and based on the location of the maximum p...This paper studies the prescribed contact angle boundary value problem of a certain type of mean curvature equation.Applying the maximum principle and the moving frame method and based on the location of the maximum point,the boundary gradient estimation of the solutions to the equation is obtained.展开更多
As a new structure of solid matter quasicrystal brings profound new ideas to the traditional condensed matter physics, its elastic equations are more complicated than that of traditional crystal. A contact problem of ...As a new structure of solid matter quasicrystal brings profound new ideas to the traditional condensed matter physics, its elastic equations are more complicated than that of traditional crystal. A contact problem of decagonal two? dimensional quasicrystal material under the action of a rigid flat die is solved satisfactorily by introducing displacement function and using Fourier analysis and dual integral equations theory, and the analytical expressions of stress and displacement fields of the contact problem are achieved. The results show that if the contact displacement is a constant in the contact zone, the vertical contact stress has order -1/2 singularity on the edge of contact zone, which provides the important mechanics parameter for contact deformation of the quasicrystal.展开更多
The paper addresses a contact problem of the theory of elasticity,i.e.,the penetration of a circular indenter with a flat base into a soft functionally graded elastic layer.The elastic properties of a functionally gra...The paper addresses a contact problem of the theory of elasticity,i.e.,the penetration of a circular indenter with a flat base into a soft functionally graded elastic layer.The elastic properties of a functionally graded layer arbitrarily vary with depth,and the foundation is assumed to be elastic,yet much harder than a layer.Approximated analytical solution is constructed,and it is shown that the solutions are asymptotically exact both for large and small values of characteristic dimensionless geometrical parameter of the problem.Numerical examples are analyzed for the cases of monotonic and nonmonotonic variations of elastic properties.Numerical results for the case of homogeneous layer are compared with the results for nondeformable foundation.展开更多
The axisymmetric elasticity theory of cubic quasicrystal was developed in Ref. [1]. The axisymmetric elasticity problem of cubic quasicrystal is reduced to a single higher-order partial differential equation by introd...The axisymmetric elasticity theory of cubic quasicrystal was developed in Ref. [1]. The axisymmetric elasticity problem of cubic quasicrystal is reduced to a single higher-order partial differential equation by introducing a displacement function, based on which, the exact analytic solutions for the elastic field of an axisymmetric contact problem of cubic quasicrystalline materials are obtained for universal contact stress or contact displacement. The result shows that if the contact stress has order - 1/2 singularity on the edge of the contact domain, die contact displacement is a constant in the contact domain. Conversely, if the contact displacement is a constant, the contact stress must have order - 1/2 singularity on the edge of die contact domain.展开更多
Roadways excavated in soft rocks at great depth are difficult to be maintained due to large deformation of surrounding rocks, which greatly influences the safety and efficiency of deep resources exploitation. During t...Roadways excavated in soft rocks at great depth are difficult to be maintained due to large deformation of surrounding rocks, which greatly influences the safety and efficiency of deep resources exploitation. During the excavation process of a deep soft rock tunnel, the rock wall may be compacted due to large deformation. In this paper, the technique to address this problem by a two-dimensional (2D) finite element software, large deformation engineering analyses software (LDEAS 1.0), is provided. By using the Lagrange multiplier method, the kinematic constraint of non-penetrating condition and static constraint of Coulomb friction are introduced to the governing equations in the form of incremental displacement. The numerical example demonstrates the efficiency of this technology. Deformations of a transportation tunnel in inclined soft rock strata at the depth of 1 000 m in Qishan coal mine and a tunnel excavated to three different depths are analyzed by two models, i.e. the additive decomposition model and polar decomposition model. It can be found that the deformation of the transportation tunnel is asymmetrical due to the inclination of rock strata. For extremely soft rock, large deformation can converge only for the additive decomposition model. The deformation of surrounding rocks increases with the increase in the tunnel depth for both models. At the same depth, the deformation calculated by the additive decomposition model is smaller than that by the polar decomposition model.展开更多
A scheme of boundary element method for moving contact of two-dimensional elastic bodies using conforming discretization is presented. Both the displacement and the traction boundary conditions are satisfied on the co...A scheme of boundary element method for moving contact of two-dimensional elastic bodies using conforming discretization is presented. Both the displacement and the traction boundary conditions are satisfied on the contacting region in the sense of discretization. An algorithm to deal with the moving of the contact boundary on a larger possible contact region is presented. The algorithm is generalized to rolling contact problem as well. Some numerical examples of moving and rolling contact of 2D elastic bodies with or without friction, including the bodies with a hole-type defect, are given to show the effectiveness and the accuracy of the presented schemes.展开更多
Based on the theory of reliability-based structural shape optimization, exact expressions of the sensibility using the stochastic finite element method for contact problems were derived in detail, and the basic steps ...Based on the theory of reliability-based structural shape optimization, exact expressions of the sensibility using the stochastic finite element method for contact problems were derived in detail, and the basic steps of structural optimization were given. A coattail-type tenon/mortise of an aero-engine was optimized. In this model, the maximum equivalent stress of the nodes on the boundary of the tenon was the objective function; the width of tooth’s neck and the side surface’s slope angle of a tenon were design variables, with constraints of tension stress, extrusion stress and reliability index. The result showed that the distributions of the contact pressure between tenon and mortise, the equivalence stress and reliability index were more reasonable. It validates the correctness of the optimization model and the reliability-based structural shape optimization, and provides valuable references for structural design of the tenon/mortise.展开更多
文摘An improved version of the regular boundary element method, the artificial boundary node approach, is derived. A simple contact algorithm is designed and implemented into the direct boundary element, regular boundary element and artificial boundary node approaches. The exisiting and derived approaches are tested using some case studies. The results of the artificial boundary node approach are compared with those of the existing boundary element program, the regular element approach, ANSYS and analytical solution whenever possible. The results show the effectiveness of the artificial boundary node approach for a wider range of boundary offsets.
基金The National Natural Science Foundation of China(No.10672039)the Key Project of Ministry of Education of China(No.105083)
文摘Contact problems and elastoplastic problems are unified and described by the variational inequality formulation, in which the constraints of the constitutional relations for elastoplastic materials and the contact conditions are relaxed totally. First, the coerciveness of the functional is proved. Then the uniqueness of the solution of variational inequality for the elastoplastic contact problems is demonstrated. The existence of the solution is also demonstrated according to the sufficient conditions for the solution of the elliptic variational inequality. A mathematical foundation is developed for the variational extremum principle of elastoplastic contact problems. The developed variational extremum forms can give an effective and strict mathematical modeling to solve contact problems with mathematical programming.
基金supported by the DFG Research Center MATHEON,"Mathematicsfor key technologies:Modelling,simulation,and optimization of real-world processes",Berlin
文摘This paper is intended to be a first step towards the continuous dependence of dynamical contact problems on the initial data as well as the uniqueness of a solution. Moreover,it provides the basis for a proof of the convergence of popular time integration schemes as the Newmark method.We study a frictionless dynamical contact problem between both linearly elastic and viscoelastic bodies which is formulated via the Signorini contact conditions.For viscoelastic materials fulfilling the Kelvin-Voigt constitutive law,we find a characterization of the class of problems which satisfy a perturbation result in a non-trivial mix of norms in function space.This characterization is given in the form of a stability condition on the contact stresses at the contact boundaries.Furthermore,we present perturbation results for two well-established approximations of the classical Signorini condition:The Signorini condition formulated in velocities and the model of normal compliance,both satisfying even a sharper version of our stability condition.
基金supported by the National Natural Science Foundation of China(Nos.11362018,11261045,and 11261401)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20116401110002)
文摘Two kinds of contact problems, i.e., the frictional contact problem and the adhesive contact problem, in three-dimensional (3D) icosahedral quasicrystals are dis- cussed by a complex variable function method. For the frictional contact problem, the contact stress exhibits power singularities at the edge of the contact zone. For the adhe- sive contact problem, the contact stress exhibits oscillatory singularities at the edge of the contact zone. The numerical examples show that for the two kinds of contact problems, the contact stress exhibits singularities, and reaches the maximum value at the edge of the contact zone. The phonon-phason coupling constant has a significant effect on the contact stress intensity, while has little impact on the contact stress distribution regu- lation. The results are consistent with those of the classical elastic materials when the phonon-phason coupling constant is 0. For the adhesive contact problem, the indentation force has positive correlation with the contact displacement, but the phonon-phason cou- pling constant impact is barely perceptible. The validity of the conclusions is verified.
基金The Project Supported by National Natural Science Foundation of China
文摘Several effective numerical methods for solving the elasto-plastic contact problems with friction are pres- ented.First,a direct substitution method is employed to impose the contact constraint conditions on condensed finite ele- ment equations,thus resulting in a reduction by half in the dimension of final governing equations.Second,an algorithm composed of contact condition probes and elasto-plastic iterations is utilized to solve the governing equation,which distinguishes two kinds of nonlinearities,and makes the solution unique.In addition,Positive-Negative Sequence Modifica- tion Method is used to condense the finite element equations of each substructure and an analytical integration is intro- duced to determine the elasto-plastic status after each time step or each iteration,hence the computational efficiency is en- hanced to a great extent.Finally,several test and practical examples are pressented showing the validity and versatility of these methods and algorithms.
文摘A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle and parametric quadratic programming method were applied to the analysis of three-dimensional frictional contact problem. The solution of the contact problem was finally reduced to a linear complementarity problem, which was reformulated as a system of nonsmooth equations via an NCP-function. A smoothing approximation to the nonsmooth equations was given by the aggregate function. A Newton method was used to solve the resulting smoothing nonlinear equations. The algorithm presented is easy to understand and implement. The reliability and efficiency of this algorithm are demonstrated both by the numerical experiments of LCP in mathematical way and the examples of contact problems in mechanics.
文摘The coupling of the local contact problems between the components and the deformation of the components in the mechanical system were discovered.A series of coordinate systems have been founded to describe the mechanical system with the contact problems.The method of isolating the boundary of contact body from others has been used to describe the constraint between the contacting points.A more generalized static mechanics model of the mechanical system with the contact problems has been founded through the principle of virtual work.As an application,the model was used to study the multi_teeth engagement problems in the inner meshed planet gear systems.The stress distribution of contact gears was got.A test has verified that the static contact model and the computational method are right.
基金The project supported by the National Natural Science foundation of china(10225212,50178016.10302007)the National Kev Basic Research Special Foundation and the Ministry of Education of China
文摘Three dimensional frictional contact problems are formulated as linear complementarity problems based on the parametric variational principle. Two aggregate-functionbased algorithms for solving complementarity problems are proposed. One is called the self-adjusting interior point algorithm, the other is called the aggregate function smoothing algorithm. Numerical experiment shows the efficiency of the proposed two algorithms.
文摘This paper develops and analyzes multigrid semismooth Newton methods for a class of inequality-constrained optimization problems in function space which are motivated by and include linear elastic contact problems of Signorini type. We show that after a suitable Moreau-Yosida type regularization of the problem superlinear local convergence is obtained for a class of semismooth Newton methods. In addition, estimates for the order of tile error introduced by the regularization are derived. The main part of the paper is devoted to the analysis of a multilevel preconditioner for the semismooth Newton system. We prove a rigorous bound for the contraction rate of the multigrid cycle which is robust with respect to sufficiently small regularization parameters and the number of grid levels. Moreover, it applies to adaptively refined grids. The paper concludes with numerical results.
基金Project supported by the National Natural Science Foundation of China(Nos.11362018,11261045 and 11261401)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20116401110002)
文摘In this paper,two kinds of contact problems in 2-D dodecagonal quasicrystals were discussed using the complex variable function method:one is the finite frictional contact problem,the other is the adhesive contact problem.The analytic expressions of contact stresses in the phonon and phason fields were obtained for a flat rigid punch,which showed that:(1) for the finite frictional contact problem,the contact stress exhibited power-type singularities at the edge of the contact zone;(2) for the adhesive contact problem,the contact stress exhibited oscillatory singularities at the edge of the contact zone.The distribution regulation of contact stress under punch was illustrated;and the low friction property of quasicrystals was verified graphically.
文摘As suggested by the title, this extensive book is concerned with crack and contact prob- lems in linear elasticity. However, in general, it is intended for a wide audience ranging from engineers to mathematical physicists. Indeed, numerous problems of both academic and tech- nological interest in electro-magnetics, acoustics, solid and fluid dynamics, etc. are actually related to each other and governed by the same mixed boundary value problems from a unified mathematical standpoint
文摘In Order to study the frictional contact problems of the elastoplastic beam theory,an extended two-dimensional beam model is established, and a second order nonlinear equilibrium problem with both internal and external complementarity conditions is proposed. The external complementarity condition provides the free boundary condition. while the internal complemententarity condition gives the interface of the elastic and plastic regions. We prove that this bicomplementarity problem is equivalent to a nonlinear variational inequality The dual variational inequality is also developed.It is shown that the dual variational inequality is much easier than the primalvariational problem. Application to limit analysis is illustrated.
文摘Based on the numerical governing formulation and non-linear complementary conditions of contact and impact problems, a reduced projection augmented Lagrange bi- conjugate gradient method is proposed for contact and impact problems by translating non-linear complementary conditions into equivalent formulation of non-linear program- ming. For contact-impact problems, a larger time-step can be adopted arriving at numer- ical convergence compared with penalty method. By establishment of the impact-contact formulations which are equivalent with original non-linear complementary conditions, a reduced projection augmented Lagrange bi-conjugate gradient method is deduced to im- prove precision and efficiency of numerical solutions. A numerical example shows that the algorithm we suggested is valid and exact.
基金supported by the National Natural Science Foundation of China (No.12061078)。
文摘This paper studies the prescribed contact angle boundary value problem of a certain type of mean curvature equation.Applying the maximum principle and the moving frame method and based on the location of the maximum point,the boundary gradient estimation of the solutions to the equation is obtained.
文摘As a new structure of solid matter quasicrystal brings profound new ideas to the traditional condensed matter physics, its elastic equations are more complicated than that of traditional crystal. A contact problem of decagonal two? dimensional quasicrystal material under the action of a rigid flat die is solved satisfactorily by introducing displacement function and using Fourier analysis and dual integral equations theory, and the analytical expressions of stress and displacement fields of the contact problem are achieved. The results show that if the contact displacement is a constant in the contact zone, the vertical contact stress has order -1/2 singularity on the edge of contact zone, which provides the important mechanics parameter for contact deformation of the quasicrystal.
基金supports of the Ministry of Education and Science of Russia (11.519.11.3028,14.B37.21.1131,14.B7.21.1632)Russian Foundation of Basic Research (11-08-91168-GFEN a)
文摘The paper addresses a contact problem of the theory of elasticity,i.e.,the penetration of a circular indenter with a flat base into a soft functionally graded elastic layer.The elastic properties of a functionally graded layer arbitrarily vary with depth,and the foundation is assumed to be elastic,yet much harder than a layer.Approximated analytical solution is constructed,and it is shown that the solutions are asymptotically exact both for large and small values of characteristic dimensionless geometrical parameter of the problem.Numerical examples are analyzed for the cases of monotonic and nonmonotonic variations of elastic properties.Numerical results for the case of homogeneous layer are compared with the results for nondeformable foundation.
基金the National Natural Science Foundation of China(No.19972011)
文摘The axisymmetric elasticity theory of cubic quasicrystal was developed in Ref. [1]. The axisymmetric elasticity problem of cubic quasicrystal is reduced to a single higher-order partial differential equation by introducing a displacement function, based on which, the exact analytic solutions for the elastic field of an axisymmetric contact problem of cubic quasicrystalline materials are obtained for universal contact stress or contact displacement. The result shows that if the contact stress has order - 1/2 singularity on the edge of the contact domain, die contact displacement is a constant in the contact domain. Conversely, if the contact displacement is a constant, the contact stress must have order - 1/2 singularity on the edge of die contact domain.
基金Supported by the Fundamental Research Funds for the Central Universities of China (2009QL05)
文摘Roadways excavated in soft rocks at great depth are difficult to be maintained due to large deformation of surrounding rocks, which greatly influences the safety and efficiency of deep resources exploitation. During the excavation process of a deep soft rock tunnel, the rock wall may be compacted due to large deformation. In this paper, the technique to address this problem by a two-dimensional (2D) finite element software, large deformation engineering analyses software (LDEAS 1.0), is provided. By using the Lagrange multiplier method, the kinematic constraint of non-penetrating condition and static constraint of Coulomb friction are introduced to the governing equations in the form of incremental displacement. The numerical example demonstrates the efficiency of this technology. Deformations of a transportation tunnel in inclined soft rock strata at the depth of 1 000 m in Qishan coal mine and a tunnel excavated to three different depths are analyzed by two models, i.e. the additive decomposition model and polar decomposition model. It can be found that the deformation of the transportation tunnel is asymmetrical due to the inclination of rock strata. For extremely soft rock, large deformation can converge only for the additive decomposition model. The deformation of surrounding rocks increases with the increase in the tunnel depth for both models. At the same depth, the deformation calculated by the additive decomposition model is smaller than that by the polar decomposition model.
基金The project supported by the National Natural Science Foundation of China (19772025)
文摘A scheme of boundary element method for moving contact of two-dimensional elastic bodies using conforming discretization is presented. Both the displacement and the traction boundary conditions are satisfied on the contacting region in the sense of discretization. An algorithm to deal with the moving of the contact boundary on a larger possible contact region is presented. The algorithm is generalized to rolling contact problem as well. Some numerical examples of moving and rolling contact of 2D elastic bodies with or without friction, including the bodies with a hole-type defect, are given to show the effectiveness and the accuracy of the presented schemes.
基金National Natural Science Foundation of China (5 9875 0 3 7)
文摘Based on the theory of reliability-based structural shape optimization, exact expressions of the sensibility using the stochastic finite element method for contact problems were derived in detail, and the basic steps of structural optimization were given. A coattail-type tenon/mortise of an aero-engine was optimized. In this model, the maximum equivalent stress of the nodes on the boundary of the tenon was the objective function; the width of tooth’s neck and the side surface’s slope angle of a tenon were design variables, with constraints of tension stress, extrusion stress and reliability index. The result showed that the distributions of the contact pressure between tenon and mortise, the equivalence stress and reliability index were more reasonable. It validates the correctness of the optimization model and the reliability-based structural shape optimization, and provides valuable references for structural design of the tenon/mortise.