期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Canopy Temperature Depression as a Potential Selection Criterion for Drought Resistance in Wheat 被引量:35
1
作者 FAN Ting-lu Maria Balta +1 位作者 Jackie Rudd William A Payne 《Agricultural Sciences in China》 CAS CSCD 2005年第10期793-800,共8页
Field studies were conducted at Bushland, Texas, USA, in 2004 to examine usefulness of canopy temperature depression (CTD), the difference of air-canopy temperature, in screening wheat (Triticum aestivum L.) genot... Field studies were conducted at Bushland, Texas, USA, in 2004 to examine usefulness of canopy temperature depression (CTD), the difference of air-canopy temperature, in screening wheat (Triticum aestivum L.) genotypes for yield under dryland and irrigated. Forty winter wheat genotypes were grown under irrigation and dryland. CTDs were recorded after heading between 1 330 and 1 530 h on 6 clear days for dryland and 9 days for irrigation. Drought susceptible index (DSI) for each genotype was calculated using mean yield under dryland and irrigated conditions. Genotypes exhibited great differences in CTD under each environment. The dryland CTDs averaged 1.33℃ ranging from -0.67 to 2.57℃, and the average irrigation CTD were 4.59℃ ranging from 3.21 to 5.62℃. A low yield reduction was observed under dryland conditions relative to irrigated conditions for high-CTD genotypes. CTD values were highly negatively correlated with DSI under dryland, and genotypes of CTDs = 1.3℃ in dryland condition were identified as drought resistant. For 21 genotypes classified as drought resistant by DSI, their CTDs were 1.68℃ for dryland and 4.35℃ for irrigation on average; for 19 genotypes classified as drought susceptible by DSI, average CTD was 0.94℃ in dryland and 4.85℃ in irrigation. The high-yield genotypes consistently had high CTD values, and the low-yield ones had low CTD values for all measurements in dryland. After heading, genotypes maintained consistent ranking for CTD. Regression results for CTD and yield suggested that the best time for taking CTD measurement was 3-4 weeks after heading in irrigation but any time before senescence in dryland. Crop water stress index (CWSI) calculated from CTD data was highly correlated with CWSI calculated from yield, which suggesting traditional costly CWSI measurement may be improved by using portable infrared thermometers. Most importantly, grain yield was highly correlated with CTD under dryland (R^2 = 0.79-0.86) and irrigation (R^2 = 0.46-0.58) conditions. These results clearly indicated grain yield and water stress can be predicted by taking CTD values in field, which can be used by breeding programs as a potential selection criterion for grain yield and drought resistance in wheat, but a second study year is needed to confirm further. 展开更多
关键词 Canopy temperature depression Crop water stress index Drought susceptible index Winter wheat
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部