In order to investigate wheel slip-sinkage problem, which is important for the design, control and simulation of lunar rovers, experiments were carried out with a wheel-soil interaction test system to measure the sink...In order to investigate wheel slip-sinkage problem, which is important for the design, control and simulation of lunar rovers, experiments were carried out with a wheel-soil interaction test system to measure the sinkage of three types of wheels in dimension with wheel lugs of different heights and numbers under a series of slip ratios (0-0.6). The curves of wheel sinkage versus slip ratio were obtained and it was found that the sinkage with slip ratio of 0.6 is 3-7 times of the static sinkage. Based on the experimental results, the slip-sinkage principle of lunar's rover lugged wheels (including the sinkage caused by longitudinal flow and side flow of soil, and soil digging of wheel lugs) was analyzed, and corresponding calculation equations were derived. All the factors that can cause slip sinkage were considered to improve the conventional wheel-soil interaction model, and a formula of changing the sinkage exponent with the slip ratio was established. Mathematical model for calculating the sinkage of wheel according to vertical load and slip ratio was developed. Calculation results show that this model can predict the slip-sinkage of wheel with high precision, making up the deficiency of Wong-Reece model that mainly reflects longitudinal slip-sinkage.展开更多
To deduce error and fussy work of manual adjustment of parameters for an S-surface controller in underwater vehicle motion control, the immune-genetic optimization of S-surface controller of an underwater vehicle was ...To deduce error and fussy work of manual adjustment of parameters for an S-surface controller in underwater vehicle motion control, the immune-genetic optimization of S-surface controller of an underwater vehicle was proposed. The ability of producing various antibodies for the immune algorithm, the self-adjustment of antibody density, and the antigen immune memory were used to realize the rapid convergence of S-surface controller parameters. It avoided loitering near the local peak value. Deduction of the S-surface controller was given. General process of the immune-genetic algorithm was described and immune-genetic optimization of S-surface controller parameters was discussed. Definitive results were obtained from many simulation experiments and lake experiments, which indicate that the algorithm can get good effect in optimizing the nonlinear motion controller parameters of an underwater vehicle.展开更多
The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the ...The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the absorption power of the auxiliary system are calculated at different working conditions, and the results show that the power of the main engine and auxiliary system at the counter-rotating turbine system matches well with each other. The technology scheme of the counter-rotating turbine system is proposed, then the experimental simulation of the lubricating oil loop, fuel loop, and seawater loop is completed. The simulation results indicate that the hydraulic transmission system can satisfy the requirements for an underwater vehicle running at a steady sailing or variable working conditions.展开更多
An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surf...An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surface and submerged conditions),the design of such a propeller is an unwieldy task.This is mainly due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different.Therefore,some factors are necessary for the design of the opti-mum propeller to utilize the power under the mentioned conditions.The design objectives of the optimum propeller are to obtain the highest possible thrust and efficiency with the minimum torque.For the current UV,the main dimensions of the propeller are pre-dicted based on the given required thrust and the defined operating conditions.These dimensions(number of blades,pitch,diameter,expanded area ratio,thickness and camber)are determined through iterative procedure.Because the propeller operates at the stern of the UV where the inflow velocity to the propeller is non-uniform,a 5-blade HSP is preferred for running the UV.Finally,the propel-ler is designed based on the numerical calculations to acquire the improved hydrodynamic efficiency.展开更多
To deal with the construction difficulties of Xiangjiaba underground hydropower station,such as complex geological conditions,narrow rock bench,high loading,high quality requirements and urgent time limit,the project ...To deal with the construction difficulties of Xiangjiaba underground hydropower station,such as complex geological conditions,narrow rock bench,high loading,high quality requirements and urgent time limit,the project adopted the concept of precision blasting.The explosive energy and rock mass fragmentation were well controlled by taking reasonable excavation sequence,designing steel pipe drilling frame,the additional techniques of double layer smooth blasting,evenly micro charge,staggered arrangement of boreholes and pre-stressed anchors.These technologies ensured the excavation quality of the rock face beam,achieving successful blasting results:Semi hole ratio was 100%in Ⅱ surrounding rock,99.2%in Ⅲ surrounding rock and 90%~ 97.3%in Ⅳ surrounding rock;underbreak was avoided and the average backbreak was only2.9 cm;the unevenness was 0 ~ 4 cm;the influence depth of blasting and unloading was 0.2 ~ 0.7 cm.展开更多
This paper discusses the use of Underground Metro stations and tunnels as protective structures in case of nuclear emergencies. Six lines are taken as a case study to investigate the use of their underground stations ...This paper discusses the use of Underground Metro stations and tunnels as protective structures in case of nuclear emergencies. Six lines are taken as a case study to investigate the use of their underground stations and tunnels. The research explains the structural design of Underground Metro and the necessary needs for hidden people inside Underground Metro used as shelters. The research investigates the calculations of the number of hidden persons inside Underground Metro used as shelters. A field study has been conducted to an Underground Metro station to detemaine the peaceful use and the emergency use of all basements of the station. Also, the field study aims to determine the existing spaces and the needed spaces of the Underground Metro station to dual--used as a nuclear shelter. Three Underground Metro stations have been selected and a field study has been conducted to determine the usages of these basements, the planning, general and design features for each one of them, and whether they can be used as protective structures for citizens in emergencies. These basements were compared for their protective factors. Also, their capacities for sheltering were calculated.展开更多
The interaction between the car-body vibration and aerodynamic performance of the train becomes more prominent motivated by the vehicle’s light-weighting design.To address this topic,this study firstly analyzes the p...The interaction between the car-body vibration and aerodynamic performance of the train becomes more prominent motivated by the vehicle’s light-weighting design.To address this topic,this study firstly analyzes the posture characteristics of the car-body based on the previous full-scale test results.And then the aerodynamic performance under different vibration cases(different car-body roll angles)is studied with an improved delayed detached eddy simulation(IDDES).The results revealed that car-body rolling had a significant impact on the aerodynamic behavior of bogies,which significantly increased the lateral force and yaw moment of a bogie and further may have aggravated the operational instability of the train.The unbalanced distribution of the longitudinal pressure on both sides of the bogie caused by the car-body rolling motion was the primary cause for the bogie yaw moment increase.The tail vortex of the train was also affected by the car-body rolling,resulting in vertical jitter.展开更多
Illyria hotel (formerly Bozhur) was built during the sixties in the heart of the actual Kosovo's capital Prishtina, according to former old Yugoslav standards in a Modernist architectural style. It represents a mas...Illyria hotel (formerly Bozhur) was built during the sixties in the heart of the actual Kosovo's capital Prishtina, according to former old Yugoslav standards in a Modernist architectural style. It represents a massive structural system with brick walls up to 54 cm thick and "avramenko" type reinforced concrete floors. The investor's aim was to add another two floors on the top of the existing ones and to build two level underground parking floors, a health spa centre, whilst at the vicinity of the existing building (the northern side) to erect a new 17 story-high brand new hotel and administration building. The retrofitting of the structure as well as construction of the new structure has been done in full accordance with the new structural Eurocodes' recommendations. 3D FEM (finite element method) modeling was used for the analysis and design, using ETABS v 9.5 nonlinear and ARSAP 2010 (Autodesk Robot Structural Analysis Professional 2010). Response spectrum design according to EC 8,3.2.2.4 has been used for seismic analysis and design with a reference peak ground acceleration on type A ground Of AgR = 0.25 g.展开更多
Inverse speed is a reversible maneuver.It is a characteristic of underwater vehicle at low speed.Maneuverability in the vertical plane at a speed lower than inverse speed is different from one at higher speed.In the p...Inverse speed is a reversible maneuver.It is a characteristic of underwater vehicle at low speed.Maneuverability in the vertical plane at a speed lower than inverse speed is different from one at higher speed.In the process of underwater working for observation,AUV's cruise speed is always low.Therefore,the research on inverse speed is important to AUV's maneuverability.The mechanism of inverse speed was analyzed,and then the steady pitching equation was derived.The parameter expression of track angle in vertical plane was deduced.Furthermore,the formula to calculate the inverse speed was obtained.The typical inverse speed phenomenon of the flat body and the revolving body was analyzed.Then the conclusion depicts that,for a particular AUV with flat body,its inverse speed is lower than that of revolving body.After all the calculation and the analysis,a series of special experiments of inverse speed were carried out in the simulation program,in the tank and in the sea trial.展开更多
The bentonite-water mixture was selected as the substitute of seabed sediments according to the in-situ measurement data of sediments 15-20 cm deep in China's ocean poly-metallic mining contract area and the soft ...The bentonite-water mixture was selected as the substitute of seabed sediments according to the in-situ measurement data of sediments 15-20 cm deep in China's ocean poly-metallic mining contract area and the soft seabed sediments could be simulated with certain proportion of the bentonite and water; besides, based on the theory on the interaction between the vehicle and ground and referenced to Bekker's apparatus and related experimental methods, a scenario on the experimental system of the pressure-sinkage characteristics of interaction between the track of tracked vehicle and soft seabed sediments was designed. The pressure-sinkage experiments were performed with different dimensions of penetration plates. The "pressure-sinkage" model based on Bekker's formula and correlation parameters were obtained to describe the corresponding characteristics of the seabed sediments and a smart calibration model on the pressure-sinkage characteristic of the track was established based on the function chain neural network, which could provide boundary loading conditions for simulation analysis of the tracked vehicle moving on the seabed.展开更多
A real-time Diesel Particulate Matter (DPM) monitor has been developed on the base of the successful National In- stitute of Occupational Health and Safety (NIOSH) designed Personal Dust Monitor (PDM) unit. The ...A real-time Diesel Particulate Matter (DPM) monitor has been developed on the base of the successful National In- stitute of Occupational Health and Safety (NIOSH) designed Personal Dust Monitor (PDM) unit. The objectives of a recently completed Australian Coal Association Research Program (ACARP) study was to modify the PDM to measure the submicrometre fraction of the aerosol in a real-time monitoring underground instrument. Mine testing focused on use of the monitor in engineering evaluations of Longwall (LW) moves demonstrated how DPM concentrations from vehicles fluctuate under varying ventilation and operational conditions. The strong influence of mine ventilation systems is reviewed. Correlation between the current SKC DPM measurement system and real-time DPM monitors were conducted and results from eight mines show a correlation between elemental carbon (EC) and the new monitor DPM mass ranging from 0.45 to 0.82 with R2〉0.86 in all but two cases. This differences in suspected to be due to variations from mine to mine in aspects such as mine atmospheric contamination, vehicle fleet variations, fuel type, engine maintenance, engine combustion efficiency, engine behavior or interference from other submicrometre aerosol. Real-time monitoring clearly reflects the movement of individual diesel vehicles and allows pin-pointing of high exposure zones such as those encountered where various vehicles engage in intense work in areas of constrained or difficult ventilation. DPM shift average monitoring approaches do not readily allow successful engineering evaluation exercises to determine acceptability of pollution levels. Identification of high DPM concentration zones allows efficient modification of mine ventilation, operator positioning and other work practices to reduce miners' exposures without waiting for laboratory analysis results.展开更多
Though the bumper of a vehicle plays a major role in protecting the vehicle body against damage in low speed impacts, many bumpers, particularly in large vehicles, are too stiff for pedestrian protection. In designing...Though the bumper of a vehicle plays a major role in protecting the vehicle body against damage in low speed impacts, many bumpers, particularly in large vehicles, are too stiff for pedestrian protection. In designing a bumper for an automobile, pedestrian protection is as important as bumper energy absorption in low speed collisions. To prevent lower extremity injuries in car-pedestrian collisions, it is important to determine the loadings that car front structures impart on the lower extremities and the mechanisms by which injury is caused by these loadings. The present work was focused on gaining more insight into the injury mechanisms leading to both ligament damage and bone fracture during bumper-pedestrian collisions. The European Enhanced Vehicle-safety Committee (EEVC) legform impactor model was introduced and validated against EEVCAVG17 criteria. The collision mechanism between a bumper and this legform impactor was investigated numerically using LS-DYNA software. To identify the effect of the bumper beam material on leg injuries, four analyses were performed on bumpers that had the same assembly but were made from different materials.展开更多
A principle of generating the nonlinear large-amplitude internal wave in a stratified fluid tank with large cross-section is pro- posed according to the 'jalousie' control mode. A new wave-maker based on the princip...A principle of generating the nonlinear large-amplitude internal wave in a stratified fluid tank with large cross-section is pro- posed according to the 'jalousie' control mode. A new wave-maker based on the principle was manufactured and the experi- ments on the generation and evolution of internal solitary wave were conducted. Both the validity of the new device and ap- plicability range of the KdV-type internal soliton theory were tested. Furthermore, a measurement technique of hydrodynamic load of internal waves was developed. By means of accurately measuring slight variations of internal wave forces exerted on a slender body in the tank, their interaction characteristics were determined. It is shown that through establishing the similarity between the model scale in the stratified fluid tank and the full scale in the numerical simulation the obtained measurement re- suits of internal wave forces are confirmed to be correct.展开更多
Purpose: This study aims to explore the biomechanical mechanism of lower limb injuries to the driver by establishing a finite element (FE) simulation model of collisions. Methods: First a minibus FE model was inte...Purpose: This study aims to explore the biomechanical mechanism of lower limb injuries to the driver by establishing a finite element (FE) simulation model of collisions. Methods: First a minibus FE model was integrated with a seat belt system. Then it was used to rebuild two collisions together with the total human model for safety (THUMS) provided by Toyota Motor Corporation: a rear-end collision between a minibus and a truck and a head-on collision of a minibus to a rigid wall. The impact velocities of both collisions were set at 56 km/h. The vehicle dynamic response, vehicle deceleration, and dashboard intrusion in the two collisions were compared. Results: In the minibus rear-end truck collision, the peak values of the yon Mises equivalent stress at the tibia and the femur were 133 MPa and 126 MPa respectively; while in the minibus head-on rigid wall collision, the data were 139 MPa and 99 MPa. Compared with the minibus head-on rigid wall collision, the vehicle deceleration was smaller and the dashboard intrusion was larger in the minibus rear-end truck collision. Conclusion: The results illustrate that a longer dashboard incursion distance corresponds to a higher yon Mises equivalent stress at the femur. The simulation results are consistent with the driver's autopsy report on lower limbs injuries. These findings verify that FE simulation method is reliable and useful to analyze the mechanisms of lower limb iniuries to the driver in minibus frontal collisions.展开更多
Smart cars are promising application domain for ubiquitous computing. Context-awareness is the key feature of a smart car for safer and easier driving. Despite many industrial innovations and academic progresses have ...Smart cars are promising application domain for ubiquitous computing. Context-awareness is the key feature of a smart car for safer and easier driving. Despite many industrial innovations and academic progresses have been made, we find a lack of fully context-aware smart cars. This study presents a general architecture of smart cars from the viewpoint of context- awareness. A hierarchical context model is proposed for description of the complex driving environment. A smart car prototype including software platform and hardware infrastructures is built to provide the running environment for the context model and applications. Two performance metrics were evaluated: accuracy of the context situation recognition and efficiency of the smart car. The whole response time of context situation recognition is nearly 1.4 s for one person, which is acceptable for non-time critical applications in a smart car.展开更多
A novel network control method based on trophaUaxis mechanism is applied to the formation flight problem for multiple un- manned aerial vehicles (UAVs). Firstly, the multiple UAVs formation flight system based on tr...A novel network control method based on trophaUaxis mechanism is applied to the formation flight problem for multiple un- manned aerial vehicles (UAVs). Firstly, the multiple UAVs formation flight system based on trophallaxis network control is given. Then, the model of leader-follower formation flight with a virtual leader based on trophallaxis network control is pre- sented, and the influence of time delays on the network performance is analyzed. A particle swarm optimization (PSO)-based formation controller is proposed for solving the leader-follower formation flight system. The proposed method is applied to five UAVs for achieving a 'V' formation, and a series of experimental results show its feasibility and validity. The proposed control algorithm is also a promising control strategy for formation flight of multiple unmanned underwater vehicles (UUVs), unmanned ground vehicles (UGVs), missiles and satellites.展开更多
基金Project(50975059) supported by the National Natural Science Foundation of ChinaProject(2006AA04Z231) supported by the National High-Tech Research and Development Program of China+2 种基金Project(ZJG0709) supported by Key Natural Science Foundation of Heilongjiang Province of ChinaProject(B07018) supported by the Program of Introducing Talents of Discipline to UniversityProject (SKLRS200801A02) supported by Chinese State Key Laboratory of Robotics and System Foundation
文摘In order to investigate wheel slip-sinkage problem, which is important for the design, control and simulation of lunar rovers, experiments were carried out with a wheel-soil interaction test system to measure the sinkage of three types of wheels in dimension with wheel lugs of different heights and numbers under a series of slip ratios (0-0.6). The curves of wheel sinkage versus slip ratio were obtained and it was found that the sinkage with slip ratio of 0.6 is 3-7 times of the static sinkage. Based on the experimental results, the slip-sinkage principle of lunar's rover lugged wheels (including the sinkage caused by longitudinal flow and side flow of soil, and soil digging of wheel lugs) was analyzed, and corresponding calculation equations were derived. All the factors that can cause slip sinkage were considered to improve the conventional wheel-soil interaction model, and a formula of changing the sinkage exponent with the slip ratio was established. Mathematical model for calculating the sinkage of wheel according to vertical load and slip ratio was developed. Calculation results show that this model can predict the slip-sinkage of wheel with high precision, making up the deficiency of Wong-Reece model that mainly reflects longitudinal slip-sinkage.
文摘To deduce error and fussy work of manual adjustment of parameters for an S-surface controller in underwater vehicle motion control, the immune-genetic optimization of S-surface controller of an underwater vehicle was proposed. The ability of producing various antibodies for the immune algorithm, the self-adjustment of antibody density, and the antigen immune memory were used to realize the rapid convergence of S-surface controller parameters. It avoided loitering near the local peak value. Deduction of the S-surface controller was given. General process of the immune-genetic algorithm was described and immune-genetic optimization of S-surface controller parameters was discussed. Definitive results were obtained from many simulation experiments and lake experiments, which indicate that the algorithm can get good effect in optimizing the nonlinear motion controller parameters of an underwater vehicle.
文摘The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the absorption power of the auxiliary system are calculated at different working conditions, and the results show that the power of the main engine and auxiliary system at the counter-rotating turbine system matches well with each other. The technology scheme of the counter-rotating turbine system is proposed, then the experimental simulation of the lubricating oil loop, fuel loop, and seawater loop is completed. The simulation results indicate that the hydraulic transmission system can satisfy the requirements for an underwater vehicle running at a steady sailing or variable working conditions.
基金supported by the marine research center of Amirkabir University of Technology
文摘An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surface and submerged conditions),the design of such a propeller is an unwieldy task.This is mainly due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different.Therefore,some factors are necessary for the design of the opti-mum propeller to utilize the power under the mentioned conditions.The design objectives of the optimum propeller are to obtain the highest possible thrust and efficiency with the minimum torque.For the current UV,the main dimensions of the propeller are pre-dicted based on the given required thrust and the defined operating conditions.These dimensions(number of blades,pitch,diameter,expanded area ratio,thickness and camber)are determined through iterative procedure.Because the propeller operates at the stern of the UV where the inflow velocity to the propeller is non-uniform,a 5-blade HSP is preferred for running the UV.Finally,the propel-ler is designed based on the numerical calculations to acquire the improved hydrodynamic efficiency.
文摘To deal with the construction difficulties of Xiangjiaba underground hydropower station,such as complex geological conditions,narrow rock bench,high loading,high quality requirements and urgent time limit,the project adopted the concept of precision blasting.The explosive energy and rock mass fragmentation were well controlled by taking reasonable excavation sequence,designing steel pipe drilling frame,the additional techniques of double layer smooth blasting,evenly micro charge,staggered arrangement of boreholes and pre-stressed anchors.These technologies ensured the excavation quality of the rock face beam,achieving successful blasting results:Semi hole ratio was 100%in Ⅱ surrounding rock,99.2%in Ⅲ surrounding rock and 90%~ 97.3%in Ⅳ surrounding rock;underbreak was avoided and the average backbreak was only2.9 cm;the unevenness was 0 ~ 4 cm;the influence depth of blasting and unloading was 0.2 ~ 0.7 cm.
文摘This paper discusses the use of Underground Metro stations and tunnels as protective structures in case of nuclear emergencies. Six lines are taken as a case study to investigate the use of their underground stations and tunnels. The research explains the structural design of Underground Metro and the necessary needs for hidden people inside Underground Metro used as shelters. The research investigates the calculations of the number of hidden persons inside Underground Metro used as shelters. A field study has been conducted to an Underground Metro station to detemaine the peaceful use and the emergency use of all basements of the station. Also, the field study aims to determine the existing spaces and the needed spaces of the Underground Metro station to dual--used as a nuclear shelter. Three Underground Metro stations have been selected and a field study has been conducted to determine the usages of these basements, the planning, general and design features for each one of them, and whether they can be used as protective structures for citizens in emergencies. These basements were compared for their protective factors. Also, their capacities for sheltering were calculated.
基金Project(BX2021379)supported by the China National Postdoctoral Program for Innovative Talents。
文摘The interaction between the car-body vibration and aerodynamic performance of the train becomes more prominent motivated by the vehicle’s light-weighting design.To address this topic,this study firstly analyzes the posture characteristics of the car-body based on the previous full-scale test results.And then the aerodynamic performance under different vibration cases(different car-body roll angles)is studied with an improved delayed detached eddy simulation(IDDES).The results revealed that car-body rolling had a significant impact on the aerodynamic behavior of bogies,which significantly increased the lateral force and yaw moment of a bogie and further may have aggravated the operational instability of the train.The unbalanced distribution of the longitudinal pressure on both sides of the bogie caused by the car-body rolling motion was the primary cause for the bogie yaw moment increase.The tail vortex of the train was also affected by the car-body rolling,resulting in vertical jitter.
文摘Illyria hotel (formerly Bozhur) was built during the sixties in the heart of the actual Kosovo's capital Prishtina, according to former old Yugoslav standards in a Modernist architectural style. It represents a massive structural system with brick walls up to 54 cm thick and "avramenko" type reinforced concrete floors. The investor's aim was to add another two floors on the top of the existing ones and to build two level underground parking floors, a health spa centre, whilst at the vicinity of the existing building (the northern side) to erect a new 17 story-high brand new hotel and administration building. The retrofitting of the structure as well as construction of the new structure has been done in full accordance with the new structural Eurocodes' recommendations. 3D FEM (finite element method) modeling was used for the analysis and design, using ETABS v 9.5 nonlinear and ARSAP 2010 (Autodesk Robot Structural Analysis Professional 2010). Response spectrum design according to EC 8,3.2.2.4 has been used for seismic analysis and design with a reference peak ground acceleration on type A ground Of AgR = 0.25 g.
基金Projects(51179035,51279221) supported by the National Natural Science Foundation of ChinaProject(E201121) supported by Science Foundation of Heilongjiang Province,China
文摘Inverse speed is a reversible maneuver.It is a characteristic of underwater vehicle at low speed.Maneuverability in the vertical plane at a speed lower than inverse speed is different from one at higher speed.In the process of underwater working for observation,AUV's cruise speed is always low.Therefore,the research on inverse speed is important to AUV's maneuverability.The mechanism of inverse speed was analyzed,and then the steady pitching equation was derived.The parameter expression of track angle in vertical plane was deduced.Furthermore,the formula to calculate the inverse speed was obtained.The typical inverse speed phenomenon of the flat body and the revolving body was analyzed.Then the conclusion depicts that,for a particular AUV with flat body,its inverse speed is lower than that of revolving body.After all the calculation and the analysis,a series of special experiments of inverse speed were carried out in the simulation program,in the tank and in the sea trial.
基金Project(11JJ3059) supported by Natural Science Foundation of Hunan Province, ChinaProject(2010GK3091) supported by Science and Technology Industrial Support Program of Hunan Province, China+1 种基金Project(10B058) supported by Excellent Youth Foundation of Education Department of Hunan Province, ChinaProject(51105386) supported by the National Natural Science Foundation of China
文摘The bentonite-water mixture was selected as the substitute of seabed sediments according to the in-situ measurement data of sediments 15-20 cm deep in China's ocean poly-metallic mining contract area and the soft seabed sediments could be simulated with certain proportion of the bentonite and water; besides, based on the theory on the interaction between the vehicle and ground and referenced to Bekker's apparatus and related experimental methods, a scenario on the experimental system of the pressure-sinkage characteristics of interaction between the track of tracked vehicle and soft seabed sediments was designed. The pressure-sinkage experiments were performed with different dimensions of penetration plates. The "pressure-sinkage" model based on Bekker's formula and correlation parameters were obtained to describe the corresponding characteristics of the seabed sediments and a smart calibration model on the pressure-sinkage characteristic of the track was established based on the function chain neural network, which could provide boundary loading conditions for simulation analysis of the tracked vehicle moving on the seabed.
文摘A real-time Diesel Particulate Matter (DPM) monitor has been developed on the base of the successful National In- stitute of Occupational Health and Safety (NIOSH) designed Personal Dust Monitor (PDM) unit. The objectives of a recently completed Australian Coal Association Research Program (ACARP) study was to modify the PDM to measure the submicrometre fraction of the aerosol in a real-time monitoring underground instrument. Mine testing focused on use of the monitor in engineering evaluations of Longwall (LW) moves demonstrated how DPM concentrations from vehicles fluctuate under varying ventilation and operational conditions. The strong influence of mine ventilation systems is reviewed. Correlation between the current SKC DPM measurement system and real-time DPM monitors were conducted and results from eight mines show a correlation between elemental carbon (EC) and the new monitor DPM mass ranging from 0.45 to 0.82 with R2〉0.86 in all but two cases. This differences in suspected to be due to variations from mine to mine in aspects such as mine atmospheric contamination, vehicle fleet variations, fuel type, engine maintenance, engine combustion efficiency, engine behavior or interference from other submicrometre aerosol. Real-time monitoring clearly reflects the movement of individual diesel vehicles and allows pin-pointing of high exposure zones such as those encountered where various vehicles engage in intense work in areas of constrained or difficult ventilation. DPM shift average monitoring approaches do not readily allow successful engineering evaluation exercises to determine acceptability of pollution levels. Identification of high DPM concentration zones allows efficient modification of mine ventilation, operator positioning and other work practices to reduce miners' exposures without waiting for laboratory analysis results.
文摘Though the bumper of a vehicle plays a major role in protecting the vehicle body against damage in low speed impacts, many bumpers, particularly in large vehicles, are too stiff for pedestrian protection. In designing a bumper for an automobile, pedestrian protection is as important as bumper energy absorption in low speed collisions. To prevent lower extremity injuries in car-pedestrian collisions, it is important to determine the loadings that car front structures impart on the lower extremities and the mechanisms by which injury is caused by these loadings. The present work was focused on gaining more insight into the injury mechanisms leading to both ligament damage and bone fracture during bumper-pedestrian collisions. The European Enhanced Vehicle-safety Committee (EEVC) legform impactor model was introduced and validated against EEVCAVG17 criteria. The collision mechanism between a bumper and this legform impactor was investigated numerically using LS-DYNA software. To identify the effect of the bumper beam material on leg injuries, four analyses were performed on bumpers that had the same assembly but were made from different materials.
基金supported by the National Natural Science Foundation of China(Grant No.11072267)the National High Technology Research and Development Program of China(Grant No.2008AA09Z316)the Pre-Research Foundation of PLA University of Science&Technology(Grant No.KYLYZLXY1202)
文摘A principle of generating the nonlinear large-amplitude internal wave in a stratified fluid tank with large cross-section is pro- posed according to the 'jalousie' control mode. A new wave-maker based on the principle was manufactured and the experi- ments on the generation and evolution of internal solitary wave were conducted. Both the validity of the new device and ap- plicability range of the KdV-type internal soliton theory were tested. Furthermore, a measurement technique of hydrodynamic load of internal waves was developed. By means of accurately measuring slight variations of internal wave forces exerted on a slender body in the tank, their interaction characteristics were determined. It is shown that through establishing the similarity between the model scale in the stratified fluid tank and the full scale in the numerical simulation the obtained measurement re- suits of internal wave forces are confirmed to be correct.
文摘Purpose: This study aims to explore the biomechanical mechanism of lower limb injuries to the driver by establishing a finite element (FE) simulation model of collisions. Methods: First a minibus FE model was integrated with a seat belt system. Then it was used to rebuild two collisions together with the total human model for safety (THUMS) provided by Toyota Motor Corporation: a rear-end collision between a minibus and a truck and a head-on collision of a minibus to a rigid wall. The impact velocities of both collisions were set at 56 km/h. The vehicle dynamic response, vehicle deceleration, and dashboard intrusion in the two collisions were compared. Results: In the minibus rear-end truck collision, the peak values of the yon Mises equivalent stress at the tibia and the femur were 133 MPa and 126 MPa respectively; while in the minibus head-on rigid wall collision, the data were 139 MPa and 99 MPa. Compared with the minibus head-on rigid wall collision, the vehicle deceleration was smaller and the dashboard intrusion was larger in the minibus rear-end truck collision. Conclusion: The results illustrate that a longer dashboard incursion distance corresponds to a higher yon Mises equivalent stress at the femur. The simulation results are consistent with the driver's autopsy report on lower limbs injuries. These findings verify that FE simulation method is reliable and useful to analyze the mechanisms of lower limb iniuries to the driver in minibus frontal collisions.
基金Project supported by the National Hi-Tech Research and Develop-ment Program (863) of China (Nos. 2006AA01Z198, and2008AA01Z132)the National Natural Science Foundation of China(No. 60533040)the National Science Fund for Distinguished Young Scholars of China (No. 60525202)
文摘Smart cars are promising application domain for ubiquitous computing. Context-awareness is the key feature of a smart car for safer and easier driving. Despite many industrial innovations and academic progresses have been made, we find a lack of fully context-aware smart cars. This study presents a general architecture of smart cars from the viewpoint of context- awareness. A hierarchical context model is proposed for description of the complex driving environment. A smart car prototype including software platform and hardware infrastructures is built to provide the running environment for the context model and applications. Two performance metrics were evaluated: accuracy of the context situation recognition and efficiency of the smart car. The whole response time of context situation recognition is nearly 1.4 s for one person, which is acceptable for non-time critical applications in a smart car.
基金supported by the National Natural Science Foundation of China(Grant Nos.61273054,60975072 and 60604009)the National Basic Research Program of China("973"Project)(Grant No.2013CB035503)+1 种基金the Program for New Century Excellent Talents in University of China(Grant No.NCET-10-0021)the Aeronautical Foundation of China(Grant No.20115151019)
文摘A novel network control method based on trophaUaxis mechanism is applied to the formation flight problem for multiple un- manned aerial vehicles (UAVs). Firstly, the multiple UAVs formation flight system based on trophallaxis network control is given. Then, the model of leader-follower formation flight with a virtual leader based on trophallaxis network control is pre- sented, and the influence of time delays on the network performance is analyzed. A particle swarm optimization (PSO)-based formation controller is proposed for solving the leader-follower formation flight system. The proposed method is applied to five UAVs for achieving a 'V' formation, and a series of experimental results show its feasibility and validity. The proposed control algorithm is also a promising control strategy for formation flight of multiple unmanned underwater vehicles (UUVs), unmanned ground vehicles (UGVs), missiles and satellites.