This article introduces a new chaotic system of three-dimensional quadratic autonomous ordinary differential equations, which can display different attractors with two unstable equilibrium points and four unstable equ...This article introduces a new chaotic system of three-dimensional quadratic autonomous ordinary differential equations, which can display different attractors with two unstable equilibrium points and four unstable equilibrium points respectively. Dynamical properties of this system are then studied. Furthermore, by applying the undetermined coefficient method, heteroclinic orbit of Shil'nikov's type in this system is found and the convergence of the series expansions of this heteroclinic orbit are proved in this article. The Shil'nikov's theorem guarantees that this system has Smale horseshoes and the horseshoe chaos.展开更多
The carbon dioxide-water system was used to investigate the flowing gas-liquid metastable state. The experiment was carded out in a constant volume vessel with a horizontal circulation pipe and a peristaltic pump forc...The carbon dioxide-water system was used to investigate the flowing gas-liquid metastable state. The experiment was carded out in a constant volume vessel with a horizontal circulation pipe and a peristaltic pump forced CO2 saturated water to flow. The temperature and pressure were recorded. The results showed that some CO2 escaped from the water in the flow process and the pressure increased, indicating that the gas-liquid equilibrium was broken. The amount of escaped CO2 varied with flow speed and reached a limit in a few minutes, entitled dy- namic equilibrium. Temperature and liquid movement played the same important role in breaking the phase equilib- rium. Under the experimental conditions, the ratio of the excessive carbon dioxide in the gas phase to its thermody- namic equilibrium amount in the liquid could achieve 15%.展开更多
A series of Ni based catalysts with different supports and basic additives were prepared by sequential impregnation method. The catalysts were characterized by XRD, BET, H2-TPR and CO2-TPD techniques. It was found tha...A series of Ni based catalysts with different supports and basic additives were prepared by sequential impregnation method. The catalysts were characterized by XRD, BET, H2-TPR and CO2-TPD techniques. It was found that the introduction of basic additives enhanced the basicities of catalyats and promoted the dispersities of Ni particles by strong interaction between Ni2+ and basic additives. Among the Ni based catalysts, 10%Ni/10%La203/ZrO2 showed the superior performance in sorbitol hydrogenolysis. The synergistic effect of Ni and La203 was proven to play an essential role in selective synthesis of EG and 1,2-PG. In the optimal reaction condition, the catalyst presented 100% sorbitol conversion and over 48% glycols (EG and 1,2-PG) yield. The kinetics study of polyols (sorbitol, xylitol and glycerol) hydrogenolysis showed that polyols with more hydroxyl number have higher activity and products distribution was final results of kinetic balance, which could give us some inspiration abeut how to change the products selectivity.展开更多
To investigate the seismic passive earth thrust with two-dimensional steady seepage, a general pseudo-dynamic solution was established based on the limit equilibrium analysis. This solution was purposefully applied to...To investigate the seismic passive earth thrust with two-dimensional steady seepage, a general pseudo-dynamic solution was established based on the limit equilibrium analysis. This solution was purposefully applied to a waterfront gravity wall, which retains a submerged backfill with a drainage system along the backfill-structure interface. The wall was assumed to move towards the backfill to the passive failure state. And the theoretical derivation considered the pore pressures induced by the seepage, the excess pore pressures generated by the earthquake and the seismic inertial forces. Thereinto, the hydrostatic and hydrodynamic pressures were calculated by the analytical formulas, while the seismic forces were obtained by the pseudo-dynamic method. In the parametric study, the results indicate that the velocity of shear wave has a more prominent impact on the seismic passive earth thrust than that of primary wave. Both the horizontal and vertical seismic actions decrease the passive earth pressure, but the horizontal one affects the amplitude of the earth pressure coefficient more significantly. Moreover, the soil friction and the wall friction distinctly increase the seismic passive earth pressure just like the static situation. The comparison shows that the results are consistent with the previous work, which verifies its validity.展开更多
Electro-thermal accelerator uses high-voltage arc energy to heat the actuating medium, it being made from low-molecular weight material. Projectile acceleration is achieved by expansion of the actuating medium. Numeri...Electro-thermal accelerator uses high-voltage arc energy to heat the actuating medium, it being made from low-molecular weight material. Projectile acceleration is achieved by expansion of the actuating medium. Numerical method for calculating interior ballistics uses Lagrangian coordinates there the conservation of momentum and the energy balance are solved. A statement of the energy balance reflects the second law of thermodynamics. Lagrangian different grid and scheme for numerical calculation were used. Fully explicit scheme was employed. The solving includes two stability conditions: Courant and shock (artificial viscosity). Numerical results were compared with the experimental research for pressure in the barrel in electro-thermal accelerator.展开更多
The equilibrium of the solid-liquid interface in pressurized solidification process of binary alloys was studied using the Gibbs theory, and the stability of the solid-liquid interface was discussed based on the consi...The equilibrium of the solid-liquid interface in pressurized solidification process of binary alloys was studied using the Gibbs theory, and the stability of the solid-liquid interface was discussed based on the consideration of the effects of pressure on the diffusion coefficient, the interface growth rate and tile equilibrium liquid composition. A mathematical description of the equi- librium status, the relationship of temperature, pressure, composition and interfacial tension was obtained, and further, a mathematical representation of the curvature radius of solid-liquid interface was developed, which facilitates a thorough understanding of the controlled variables of the interfacial stability.展开更多
In this paper, the methodology of non-equilibrium thermodynamics is introduced for kinetics research of CO2 capture by ionic liquids, and the following three key scientific problems are proposed to apply the methodolo...In this paper, the methodology of non-equilibrium thermodynamics is introduced for kinetics research of CO2 capture by ionic liquids, and the following three key scientific problems are proposed to apply the methodology in kinetics research of CO2 capture by ionic liquids: reliable thermodynamic models, interfacial transport rate description and accurate experimental flux. The obtaining of accurate experimental flux requires reliable experimental kinetics data and the effective transport area in the CO2 capture process by ionic liquids. Research advances in the three key scientific problems are reviewed systematically and further work is analyzed. Finally, perspectives of non-equilibrium thermodynamic research of the kinetics of CO2 capture by ionic liquids are proposed.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 60074034 and 70271068
文摘This article introduces a new chaotic system of three-dimensional quadratic autonomous ordinary differential equations, which can display different attractors with two unstable equilibrium points and four unstable equilibrium points respectively. Dynamical properties of this system are then studied. Furthermore, by applying the undetermined coefficient method, heteroclinic orbit of Shil'nikov's type in this system is found and the convergence of the series expansions of this heteroclinic orbit are proved in this article. The Shil'nikov's theorem guarantees that this system has Smale horseshoes and the horseshoe chaos.
基金Supported by the NationaJ Natural Science Foundation of China (21106176), President Fund of GUCAS (Y15101JY00), China Postdoctoral Science Foundation (2012T50155) and National Basic Research Program of China (2009CB219903).
文摘The carbon dioxide-water system was used to investigate the flowing gas-liquid metastable state. The experiment was carded out in a constant volume vessel with a horizontal circulation pipe and a peristaltic pump forced CO2 saturated water to flow. The temperature and pressure were recorded. The results showed that some CO2 escaped from the water in the flow process and the pressure increased, indicating that the gas-liquid equilibrium was broken. The amount of escaped CO2 varied with flow speed and reached a limit in a few minutes, entitled dy- namic equilibrium. Temperature and liquid movement played the same important role in breaking the phase equilib- rium. Under the experimental conditions, the ratio of the excessive carbon dioxide in the gas phase to its thermody- namic equilibrium amount in the liquid could achieve 15%.
基金This work was supported by the National Natural Science Foundation of China (No.51376185 and No.51106108), the National Basic Research Program of China (No.2012CB215304), the National High Technology Research and Development Program of China (No.2012AA101806), and the Natural Science Foundation of Guangdong Province (No.$2013010011612).
文摘A series of Ni based catalysts with different supports and basic additives were prepared by sequential impregnation method. The catalysts were characterized by XRD, BET, H2-TPR and CO2-TPD techniques. It was found that the introduction of basic additives enhanced the basicities of catalyats and promoted the dispersities of Ni particles by strong interaction between Ni2+ and basic additives. Among the Ni based catalysts, 10%Ni/10%La203/ZrO2 showed the superior performance in sorbitol hydrogenolysis. The synergistic effect of Ni and La203 was proven to play an essential role in selective synthesis of EG and 1,2-PG. In the optimal reaction condition, the catalyst presented 100% sorbitol conversion and over 48% glycols (EG and 1,2-PG) yield. The kinetics study of polyols (sorbitol, xylitol and glycerol) hydrogenolysis showed that polyols with more hydroxyl number have higher activity and products distribution was final results of kinetic balance, which could give us some inspiration abeut how to change the products selectivity.
基金Projects(U1234204,51378463) supported by the National Natural Science Foundation of China
文摘To investigate the seismic passive earth thrust with two-dimensional steady seepage, a general pseudo-dynamic solution was established based on the limit equilibrium analysis. This solution was purposefully applied to a waterfront gravity wall, which retains a submerged backfill with a drainage system along the backfill-structure interface. The wall was assumed to move towards the backfill to the passive failure state. And the theoretical derivation considered the pore pressures induced by the seepage, the excess pore pressures generated by the earthquake and the seismic inertial forces. Thereinto, the hydrostatic and hydrodynamic pressures were calculated by the analytical formulas, while the seismic forces were obtained by the pseudo-dynamic method. In the parametric study, the results indicate that the velocity of shear wave has a more prominent impact on the seismic passive earth thrust than that of primary wave. Both the horizontal and vertical seismic actions decrease the passive earth pressure, but the horizontal one affects the amplitude of the earth pressure coefficient more significantly. Moreover, the soil friction and the wall friction distinctly increase the seismic passive earth pressure just like the static situation. The comparison shows that the results are consistent with the previous work, which verifies its validity.
文摘Electro-thermal accelerator uses high-voltage arc energy to heat the actuating medium, it being made from low-molecular weight material. Projectile acceleration is achieved by expansion of the actuating medium. Numerical method for calculating interior ballistics uses Lagrangian coordinates there the conservation of momentum and the energy balance are solved. A statement of the energy balance reflects the second law of thermodynamics. Lagrangian different grid and scheme for numerical calculation were used. Fully explicit scheme was employed. The solving includes two stability conditions: Courant and shock (artificial viscosity). Numerical results were compared with the experimental research for pressure in the barrel in electro-thermal accelerator.
基金supported by the National Natural Science Foundation of China(Grant Nos.50875143 and 50675113)the support of the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of Chinathe support of State Key Laboratory of Materials Processing and Die & Mould Technology,Huazhong University of Science and Technology
文摘The equilibrium of the solid-liquid interface in pressurized solidification process of binary alloys was studied using the Gibbs theory, and the stability of the solid-liquid interface was discussed based on the consideration of the effects of pressure on the diffusion coefficient, the interface growth rate and tile equilibrium liquid composition. A mathematical description of the equi- librium status, the relationship of temperature, pressure, composition and interfacial tension was obtained, and further, a mathematical representation of the curvature radius of solid-liquid interface was developed, which facilitates a thorough understanding of the controlled variables of the interfacial stability.
基金supported by the National Basic Research Program of China (2009CB226103, 2009CB219902)Swedish Research Councilgrateful to the support by the 363rd Session of Xiangshan Science Conferences, "Scientific Issues of Energy Conservation Mechanism for Waste-decreasing Process"
文摘In this paper, the methodology of non-equilibrium thermodynamics is introduced for kinetics research of CO2 capture by ionic liquids, and the following three key scientific problems are proposed to apply the methodology in kinetics research of CO2 capture by ionic liquids: reliable thermodynamic models, interfacial transport rate description and accurate experimental flux. The obtaining of accurate experimental flux requires reliable experimental kinetics data and the effective transport area in the CO2 capture process by ionic liquids. Research advances in the three key scientific problems are reviewed systematically and further work is analyzed. Finally, perspectives of non-equilibrium thermodynamic research of the kinetics of CO2 capture by ionic liquids are proposed.