A small number of copepod species have adapted to an existence in the extreme habitat of hypersaline water. 13 copepod species have been recorded in the hypersaline waters of Crimea (the largest peninsula in the Blac...A small number of copepod species have adapted to an existence in the extreme habitat of hypersaline water. 13 copepod species have been recorded in the hypersaline waters of Crimea (the largest peninsula in the Black Sea with over 50 hypersaline lakes). Summarizing our own and literal_re data, the author concludes that the Crimean extreme environment is not an exception: copepod species dwell in hypersaline waters worldwide. There are at least 26 copepod species around the world living at salinity above 100; among them 12 species are found at salinity higher than 200. In the Crimea Cletocamptus retrogressus is found at salinity 360×10^-3 (with a density of 1 320 individuals/m^3) and Arctodiaptomus salinus at salinity 300×10^-3 (with a density of 343 individuals/m^3). Those species are probably the most halotolerant copepod species in the world. High halotolerance of osmoconforming copepods may be explained by exoosmolyte consumption, mainly with food. High tolerance to many factors in adults, availability of resting stages, and an opportunity of long-distance transportation of resting stages by birds and/or winds are responsible for the wide geographic distribution of these halophilic copepods.展开更多
The interactive effects of natural and human factors on ecosystems have been well studied, and the quantitative assessment of large-scale ecological vulnerability caused by natural and human factors is now one of the ...The interactive effects of natural and human factors on ecosystems have been well studied, and the quantitative assessment of large-scale ecological vulnerability caused by natural and human factors is now one of the most active topics in the ifeld. Taking the Guangxi Xijiang River Economic Belt in southwest China (GXEB) as a case study, we assess ecological vulnerability based on the Vulnerability Scoping Diagram (VSD) model. The indices system is decomposed into three sub objects, ten elements and 25 indicators layer by layer, which included factors from both natural and human ifelds. Results indicate that zones with lower, middle-lower, middle, middle-higher and higher vulnerability account for 11.31%, 22.63%, 27.60%, 24.39%, and 14.07%, respectively. The western and eastern parts of GXEB are more vulnerable than the central part and the mountain and urban areas are of higher vulnerability than the basins and river valleys. Compared with a vulnerability assessment based on natural factors only, it is concluded that human activities indeed cause the transition from naturally stable zones to vulnerable zones. The nature-dominated vulnerable zones are different with human-dominated ones in size and distribution, the latter being smaller, more scattered and distributed in urban areas and their surroundings. About 53%of total construction land is distributed in zones with middle and middle-higher ecological vulnerability;less vulnerable zones should attract construction in the future. Relevant suggestions are proposed on how to reduce vulnerability according to inducing factors. The VSD model has a signiifcant advantage in the quantitative evaluation of ecological vulnerability, but is insufficient to distinguish nature- or human-dominated vulnerability quantitatively.展开更多
文摘A small number of copepod species have adapted to an existence in the extreme habitat of hypersaline water. 13 copepod species have been recorded in the hypersaline waters of Crimea (the largest peninsula in the Black Sea with over 50 hypersaline lakes). Summarizing our own and literal_re data, the author concludes that the Crimean extreme environment is not an exception: copepod species dwell in hypersaline waters worldwide. There are at least 26 copepod species around the world living at salinity above 100; among them 12 species are found at salinity higher than 200. In the Crimea Cletocamptus retrogressus is found at salinity 360×10^-3 (with a density of 1 320 individuals/m^3) and Arctodiaptomus salinus at salinity 300×10^-3 (with a density of 343 individuals/m^3). Those species are probably the most halotolerant copepod species in the world. High halotolerance of osmoconforming copepods may be explained by exoosmolyte consumption, mainly with food. High tolerance to many factors in adults, availability of resting stages, and an opportunity of long-distance transportation of resting stages by birds and/or winds are responsible for the wide geographic distribution of these halophilic copepods.
基金National Natural Science Foundation of China(41201110)Young Talents Foundation of Nanjing Institute of Geography and Limnology of CAS(NIGLAS2011QD03)
文摘The interactive effects of natural and human factors on ecosystems have been well studied, and the quantitative assessment of large-scale ecological vulnerability caused by natural and human factors is now one of the most active topics in the ifeld. Taking the Guangxi Xijiang River Economic Belt in southwest China (GXEB) as a case study, we assess ecological vulnerability based on the Vulnerability Scoping Diagram (VSD) model. The indices system is decomposed into three sub objects, ten elements and 25 indicators layer by layer, which included factors from both natural and human ifelds. Results indicate that zones with lower, middle-lower, middle, middle-higher and higher vulnerability account for 11.31%, 22.63%, 27.60%, 24.39%, and 14.07%, respectively. The western and eastern parts of GXEB are more vulnerable than the central part and the mountain and urban areas are of higher vulnerability than the basins and river valleys. Compared with a vulnerability assessment based on natural factors only, it is concluded that human activities indeed cause the transition from naturally stable zones to vulnerable zones. The nature-dominated vulnerable zones are different with human-dominated ones in size and distribution, the latter being smaller, more scattered and distributed in urban areas and their surroundings. About 53%of total construction land is distributed in zones with middle and middle-higher ecological vulnerability;less vulnerable zones should attract construction in the future. Relevant suggestions are proposed on how to reduce vulnerability according to inducing factors. The VSD model has a signiifcant advantage in the quantitative evaluation of ecological vulnerability, but is insufficient to distinguish nature- or human-dominated vulnerability quantitatively.