A mathematical model of principal elements of the aircraft hydraulic system is presented based on the heat transfer theory. The dynamic heat transfer process of the hydraulic oil and the pump shells within an aircraft...A mathematical model of principal elements of the aircraft hydraulic system is presented based on the heat transfer theory. The dynamic heat transfer process of the hydraulic oil and the pump shells within an aircraft hydraulic system are analyzed by the difference method. A kind of means for the prediction to variational trends of the aircraft hydraulic system temperature is provided during operation. The numerical prediction and simulation under the operational conditions are presented for ground trial running and the decelerated operation in flight. Computational results show that there is a good coincidence between the experimental data and the numerical predictions.展开更多
A mathematical model was established for condensation on surfaces of verticalcorrugated plates based on the mechanism of heat transfer enhancement to thin down the liquid filmdue to surface tension effect between corr...A mathematical model was established for condensation on surfaces of verticalcorrugated plates based on the mechanism of heat transfer enhancement to thin down the liquid filmdue to surface tension effect between corrugated plate surfaces and liquid films. The relative heattransfer coefficients of condensation on corrugation plates were calculated in contrast withequivalent vertical plane ones. The heat transfer enhancement effects for the main geometricparameters such as pitch, height, corrugation angle, tilt angle, and fillet radii of corrugationswere analyzed to guide the optimization of corrugation structure for application. A two-scalecorrugation is suggested, which can compromise both the enhanced heat transfer effect and adequatecross section area for flows, and it makes the heat transfer coefficient 1 to 2 times more than thatof an equivalent plane one.展开更多
The results of a heat-conduction experiment with a central point source in a sand barrel shows that the temperature of the heat source increase much faster in sand saturated with oil and air (dry sand) than in water...The results of a heat-conduction experiment with a central point source in a sand barrel shows that the temperature of the heat source increase much faster in sand saturated with oil and air (dry sand) than in water sand. During cooling the temperature of the central heat source goes down slower in oil- or air-saturated sands than in water sands. Based on the theory of heat-conduction in porous media and the experimental results, we developed a new heat-conduction logging technique which utilizes an artificial heat source (dynamite charge or electric heater) to heat up target forma- tions in the borehole and then measure the change of temperature at a later time. Post-frac oil production is shown to be directly proportional to the size of the temperature anomaly when other reservoir parameters are fairly consistent. The method is used to evaluate potential oil production for marginal reservoirs in the FY formation in Song-Liao basin of China.展开更多
Ficus hispida L. (Moraceae) is a remarkable species in the ecosystem of tropical rainforests in Xishuangbanna, China. The figs and fig_pollination wasps (Chalcidoidae: Agaonidae) are highly co_evolved mutualists tha...Ficus hispida L. (Moraceae) is a remarkable species in the ecosystem of tropical rainforests in Xishuangbanna, China. The figs and fig_pollination wasps (Chalcidoidae: Agaonidae) are highly co_evolved mutualists that depend completely on each other for propagating descendants. Pollination of all fig species is done by fig wasps; their unique symbiotic associates, the fig wasps, cannot develop in anywhere except in the fig syconia. The present paper reports on the biology and flowering phenology of F. hispida , as well as the propagation character and pollination behavior of the fig wasps (Ceratosolen solmsi marchali Mayr) based on our observations in the rainforests of Xishuangbanna, southern Yunnan of China. F. hispida is a dioecious tree that annually blossoms and bears fruits 6-8 times, with four to five fruit_bearing peaks. The male trees produce pollen and provide fig wasps with reproductive havens, while the female trees produce fig seeds after pollination by the female wasps. Pollen of F. hispida cannot escape from the dehiscent anthers until they are disturbed by fig wasps. The female wasps open the anthers and collect pollen with their antennal scrapes, mandibles and legs, and then carry pollen to the female receptive syconia where fertilization takes place. Meanwhile, some of the female wasps lay eggs in the male receptive syconia. It takes about 3-67 min to search for the receptive syconia for pollination, and 15-23 h to enter the female receptive syconia. The number of female wasps entering a syconium has close relation with the impregnation and seed_bearing rate of female flowers, as well as the oviposition and reproduction rate of the fig wasps themselves. F. hispida is endowed with a relatively high level of seed bearing (54.1%-82.5%, average 73.8 %). The wasp oviposition rate on the male flowers is between 72.3% and 93.8% with a mean of 84.4%.展开更多
In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is est...In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is established to validate the accuracy of CFD simulation in terms of velocity and temperature distributions.The comparison between the measurement and the simulation shows a good agreement.By evaluating the condensers' sucked air temperature with CFD for three units installed in a row,it is found that the minimum separation distance among neighboring units is 0.2 m;a vertical wall should be apart from the unit line by at least 0.8 m;and large different operating pressures among units do not impact the flow rate and the heat transfer of the other units meaningfully.展开更多
This paper presents a fiber optic temperature measuring system used for measuring the temperature in many occasions. The system is of reflective type and composed of thermostatic bimetal plate, lever piston framewo...This paper presents a fiber optic temperature measuring system used for measuring the temperature in many occasions. The system is of reflective type and composed of thermostatic bimetal plate, lever piston framework, optical grating and optical fiber probes. When the temperature changes, the thermostatic bimetal plate deforms. Through lever piston framework, the optical grating produces displacement in the upright direction. Thus the change of the temperature is transformed into the upright displacement of the optical grating. Optical fiber probes are used for detecting the number of streak lines of the optical grating′s displacement depending on the change of temperature. The detected signal can be transmitted to the control center through optical fiber cable up to distance of 1 km. The measurable range of this system reaches 100℃ with accuracy of ±0.2℃.展开更多
This paper presents the heat transfer characteristics of A1203-water nanofluid in a coiled agitated vessel with propeller agitator. The experimental study was conducted using 0.10%, 0.20% and 0.30% volume concentra ti...This paper presents the heat transfer characteristics of A1203-water nanofluid in a coiled agitated vessel with propeller agitator. The experimental study was conducted using 0.10%, 0.20% and 0.30% volume concentra tion of A1203-water nanofluids. The results showed considerable enhancement of convective heat transfer using the nanofluids. The empirical correlations developed for Nusselt number in terms of Reynolds number, Prandtl number, viscosity ratio and volume concentration fit with the experimental data within ±10%. The heat transfer characteris tics were also simulated using computational fluid dynamics using FLUENT software with the standard ke model and multiple reference frame were adopted. The computational fluid dynamics (CFD) predicted Nusselt number agrees well with the experimental value and the discrepancy is found to be less than +8%.展开更多
A fiber Bragg grating temperature sensor network was designed to implement the real-time health monitoring of the aluminum reduction cell. The heat transfer process was simulated using software ANSYS, and an on-line s...A fiber Bragg grating temperature sensor network was designed to implement the real-time health monitoring of the aluminum reduction cell. The heat transfer process was simulated using software ANSYS, and an on-line shell monitoring system was established based on optical sensing technology. According to aluminum reduction cell heat transfer theory, the 2D slice finite element model was developed. The relationship between shell temperature and cell status was discussed. Fiber Bragg grating (FBG) was chosen as the temperature sensor in light of its unique advantages. The accuracy of designed FBG temperature sensors exceeds 2 ~C, and good repeatability was exhibited. An interrogation system with 104 sensors based on VPG (volume phase grating) filter was established. Through the long-term monitoring on running state, the status of the aluminum reduction cell, including security and fatigue life could be acquired and estimated exactly. The obtained results provide the foundation for the production status monitoring and fault diagnosis. Long-term test results show good stability and repeatability which are compatible with electrolysis process.展开更多
The Kaerqueka polymetallic deposit, Qinghai, China, is one of the typical skarn-type polymetallic ore deposits in the Qimantage metallogenic belt. The dynamic mechanism on the formation of the Kaerqueka polymetallic d...The Kaerqueka polymetallic deposit, Qinghai, China, is one of the typical skarn-type polymetallic ore deposits in the Qimantage metallogenic belt. The dynamic mechanism on the formation of the Kaerqueka polymetallic deposit is always an interesting topic of research. We used the finite difference method to model the mineralizing process of the chalcopyrite in this region with considering the field geological features, mineralogy and geochemistry. In particular, the modern mineralization theory was used to quantitatively estimate the related chemical reactions associated with the chalcopyrite formation in the Kaerqueka polymetallic deposit. The numerical results indicate that the hydrothermal fluid flow is a key controlling factor of mineralization in this area and the temperature gradient is the driving force of pore-fluid flow. The metallogenic temperature of chalcopyrite in the Kaerqueka polymetallic deposit is between 250 and 350 ℃. The corresponding computational results have been verified by the field observations. It has been further demonstrated that the simulation results of coupled models in the field of emerging computational geosciences can enhance our understanding of the ore-forming processes in this area.展开更多
The bench-scale cooling crystallization for ternary solution of L-ascorbic acid (Vitamin C) was studied.The solid-liquid phase diagram of Vitamin C-water-ethanol system was obtained on the basis of differential scanni...The bench-scale cooling crystallization for ternary solution of L-ascorbic acid (Vitamin C) was studied.The solid-liquid phase diagram of Vitamin C-water-ethanol system was obtained on the basis of differential scanning calorimeter (DSC) curves. The heat of crystallization of Vitamin C was calculated with the aid of quantitative analysis. According to the population balance equation under unsteady state, the rates of nucleation and growth were determined. The parameters of crystallization kinetics equations were estimated by regression of experimental data. Crystal morphology and size were determined with x-ray diffraction and TA Ⅱ Coulter Counter.展开更多
This paper focuses on the development of three types of activated carbon (AC) adsorbents, i.e. granular AC, consolidated AC with chemical binder, and consolidated AC with expanded natural graphite (ENG). Their the...This paper focuses on the development of three types of activated carbon (AC) adsorbents, i.e. granular AC, consolidated AC with chemical binder, and consolidated AC with expanded natural graphite (ENG). Their thermal conductivity was investigated with the steady-state heat source method and the permeability was tested with nitrogen as the gas source. Results show that the thermal conductivity of granular AC with different sizes al-most maintains a constant at 0.36 W-(m.K)-', while the value modestly increases to 0.40 W.(m.K)-' for the con- solidated AC with chemical binder. The consolidated AC with ENG at the density of 600 kg. m-3 shows the best heat transfer performance and their thermal conductivity vary from 2.08 W-(m.K)- to 2.61 W. (m.K)-1 according toits fraction of AC. However, the granular AC and consolidated AC with chemical binder show the better permeabil- ity performance than consolidated AC with ENG binder whose permeability changes from 6.98x10-13 m2 to 5.16x10TM m2 and the maximum occurs when the content of AC reaches 71.4% (by mass). According to the differ- ent thermal properties, the refrigeration application of three types of adsorbents is analyzed.展开更多
The entanglement properties of a three-spin X X Z Heisenberg chain with three-spin interaction are studied by means of concurrence of pairwise entanglement. We show that ground-state pairwise entanglement, pairwise th...The entanglement properties of a three-spin X X Z Heisenberg chain with three-spin interaction are studied by means of concurrence of pairwise entanglement. We show that ground-state pairwise entanglement, pairwise thermal entanglement, or quantum phase transition is not present in antiferromagnetic spin chain. For the ferromagnetic case, quantum phase transition takes place at A = 1 for anisotropic interaction and at some values of three-spin coupling strength, and pairwise thermal entanglement increases when the value of J/T increases and with anisotropic interaction and three-spin interaction decrease. In addition, we find that increasing the anisotropic interaction and the three-spin interaction will decrease critical temperature.展开更多
Freeze drying or lyophilization of aqueous solutions is widely used in pharmaceutical industry. The in-creased importance Of the process is gaining a worldwide interest of research. A growing body of literature has de...Freeze drying or lyophilization of aqueous solutions is widely used in pharmaceutical industry. The in-creased importance Of the process is gaining a worldwide interest of research. A growing body of literature has demonstrated that the scientific approach can result in improved product quality with minimum trial and error em-piricism. Formulation and process development need a systematical understanding of the physical chemistry of freezing and freeze drying, material science and mechanisms of heat and mass transfer. This paper presents an overview on freeze ding of aqueous solutions based on publications in the past few decades. The important issuesof the process are analyzed.展开更多
The thermal distortion of an optical reflector surface due to the changing sunlight in a space environment will cause shift and spreading of its reflected focus and thereby influence the performance of space-to-ground...The thermal distortion of an optical reflector surface due to the changing sunlight in a space environment will cause shift and spreading of its reflected focus and thereby influence the performance of space-to-ground laser communication links. Based on the characteristics of a low orbit satellite, the normal shift of a plan mirror caused by thermal distortion is analyzed with the software of the ANSYS of finite element analysis. A general expression of the transmitted beam from a distorted reflector surface and a counting formula for the shifts of the focus center before and after thermal distortion are deduced. The result of simulation shews that the magnitude order of the normal shift of the antenna mirror surface can be as high as tens of urad. The worse the mirror thermal distortion is, the larger the shift of the received focus center is. And the change of the shifts does not obey a linear rule.展开更多
文摘A mathematical model of principal elements of the aircraft hydraulic system is presented based on the heat transfer theory. The dynamic heat transfer process of the hydraulic oil and the pump shells within an aircraft hydraulic system are analyzed by the difference method. A kind of means for the prediction to variational trends of the aircraft hydraulic system temperature is provided during operation. The numerical prediction and simulation under the operational conditions are presented for ground trial running and the decelerated operation in flight. Computational results show that there is a good coincidence between the experimental data and the numerical predictions.
文摘A mathematical model was established for condensation on surfaces of verticalcorrugated plates based on the mechanism of heat transfer enhancement to thin down the liquid filmdue to surface tension effect between corrugated plate surfaces and liquid films. The relative heattransfer coefficients of condensation on corrugation plates were calculated in contrast withequivalent vertical plane ones. The heat transfer enhancement effects for the main geometricparameters such as pitch, height, corrugation angle, tilt angle, and fillet radii of corrugationswere analyzed to guide the optimization of corrugation structure for application. A two-scalecorrugation is suggested, which can compromise both the enhanced heat transfer effect and adequatecross section area for flows, and it makes the heat transfer coefficient 1 to 2 times more than thatof an equivalent plane one.
文摘The results of a heat-conduction experiment with a central point source in a sand barrel shows that the temperature of the heat source increase much faster in sand saturated with oil and air (dry sand) than in water sand. During cooling the temperature of the central heat source goes down slower in oil- or air-saturated sands than in water sands. Based on the theory of heat-conduction in porous media and the experimental results, we developed a new heat-conduction logging technique which utilizes an artificial heat source (dynamite charge or electric heater) to heat up target forma- tions in the borehole and then measure the change of temperature at a later time. Post-frac oil production is shown to be directly proportional to the size of the temperature anomaly when other reservoir parameters are fairly consistent. The method is used to evaluate potential oil production for marginal reservoirs in the FY formation in Song-Liao basin of China.
文摘Ficus hispida L. (Moraceae) is a remarkable species in the ecosystem of tropical rainforests in Xishuangbanna, China. The figs and fig_pollination wasps (Chalcidoidae: Agaonidae) are highly co_evolved mutualists that depend completely on each other for propagating descendants. Pollination of all fig species is done by fig wasps; their unique symbiotic associates, the fig wasps, cannot develop in anywhere except in the fig syconia. The present paper reports on the biology and flowering phenology of F. hispida , as well as the propagation character and pollination behavior of the fig wasps (Ceratosolen solmsi marchali Mayr) based on our observations in the rainforests of Xishuangbanna, southern Yunnan of China. F. hispida is a dioecious tree that annually blossoms and bears fruits 6-8 times, with four to five fruit_bearing peaks. The male trees produce pollen and provide fig wasps with reproductive havens, while the female trees produce fig seeds after pollination by the female wasps. Pollen of F. hispida cannot escape from the dehiscent anthers until they are disturbed by fig wasps. The female wasps open the anthers and collect pollen with their antennal scrapes, mandibles and legs, and then carry pollen to the female receptive syconia where fertilization takes place. Meanwhile, some of the female wasps lay eggs in the male receptive syconia. It takes about 3-67 min to search for the receptive syconia for pollination, and 15-23 h to enter the female receptive syconia. The number of female wasps entering a syconium has close relation with the impregnation and seed_bearing rate of female flowers, as well as the oviposition and reproduction rate of the fig wasps themselves. F. hispida is endowed with a relatively high level of seed bearing (54.1%-82.5%, average 73.8 %). The wasp oviposition rate on the male flowers is between 72.3% and 93.8% with a mean of 84.4%.
文摘In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is established to validate the accuracy of CFD simulation in terms of velocity and temperature distributions.The comparison between the measurement and the simulation shows a good agreement.By evaluating the condensers' sucked air temperature with CFD for three units installed in a row,it is found that the minimum separation distance among neighboring units is 0.2 m;a vertical wall should be apart from the unit line by at least 0.8 m;and large different operating pressures among units do not impact the flow rate and the heat transfer of the other units meaningfully.
文摘This paper presents a fiber optic temperature measuring system used for measuring the temperature in many occasions. The system is of reflective type and composed of thermostatic bimetal plate, lever piston framework, optical grating and optical fiber probes. When the temperature changes, the thermostatic bimetal plate deforms. Through lever piston framework, the optical grating produces displacement in the upright direction. Thus the change of the temperature is transformed into the upright displacement of the optical grating. Optical fiber probes are used for detecting the number of streak lines of the optical grating′s displacement depending on the change of temperature. The detected signal can be transmitted to the control center through optical fiber cable up to distance of 1 km. The measurable range of this system reaches 100℃ with accuracy of ±0.2℃.
文摘This paper presents the heat transfer characteristics of A1203-water nanofluid in a coiled agitated vessel with propeller agitator. The experimental study was conducted using 0.10%, 0.20% and 0.30% volume concentra tion of A1203-water nanofluids. The results showed considerable enhancement of convective heat transfer using the nanofluids. The empirical correlations developed for Nusselt number in terms of Reynolds number, Prandtl number, viscosity ratio and volume concentration fit with the experimental data within ±10%. The heat transfer characteris tics were also simulated using computational fluid dynamics using FLUENT software with the standard ke model and multiple reference frame were adopted. The computational fluid dynamics (CFD) predicted Nusselt number agrees well with the experimental value and the discrepancy is found to be less than +8%.
基金Project(61174018) supported by National Natural Science Foundation, ChinaProject(ZR2011FQ025) supported by the Natural Science Foundation of Shandong Province ChinaProject(2010GN066) supported by the Independent Innovation Foundation of Shandong University, China
文摘A fiber Bragg grating temperature sensor network was designed to implement the real-time health monitoring of the aluminum reduction cell. The heat transfer process was simulated using software ANSYS, and an on-line shell monitoring system was established based on optical sensing technology. According to aluminum reduction cell heat transfer theory, the 2D slice finite element model was developed. The relationship between shell temperature and cell status was discussed. Fiber Bragg grating (FBG) was chosen as the temperature sensor in light of its unique advantages. The accuracy of designed FBG temperature sensors exceeds 2 ~C, and good repeatability was exhibited. An interrogation system with 104 sensors based on VPG (volume phase grating) filter was established. Through the long-term monitoring on running state, the status of the aluminum reduction cell, including security and fatigue life could be acquired and estimated exactly. The obtained results provide the foundation for the production status monitoring and fault diagnosis. Long-term test results show good stability and repeatability which are compatible with electrolysis process.
基金Project(2017YFC0601503)supported by the National Key R&D Program of ChinaProjects(41872249,41472302,41772348)supported by the National Natural Science Foundation of China
文摘The Kaerqueka polymetallic deposit, Qinghai, China, is one of the typical skarn-type polymetallic ore deposits in the Qimantage metallogenic belt. The dynamic mechanism on the formation of the Kaerqueka polymetallic deposit is always an interesting topic of research. We used the finite difference method to model the mineralizing process of the chalcopyrite in this region with considering the field geological features, mineralogy and geochemistry. In particular, the modern mineralization theory was used to quantitatively estimate the related chemical reactions associated with the chalcopyrite formation in the Kaerqueka polymetallic deposit. The numerical results indicate that the hydrothermal fluid flow is a key controlling factor of mineralization in this area and the temperature gradient is the driving force of pore-fluid flow. The metallogenic temperature of chalcopyrite in the Kaerqueka polymetallic deposit is between 250 and 350 ℃. The corresponding computational results have been verified by the field observations. It has been further demonstrated that the simulation results of coupled models in the field of emerging computational geosciences can enhance our understanding of the ore-forming processes in this area.
文摘The bench-scale cooling crystallization for ternary solution of L-ascorbic acid (Vitamin C) was studied.The solid-liquid phase diagram of Vitamin C-water-ethanol system was obtained on the basis of differential scanning calorimeter (DSC) curves. The heat of crystallization of Vitamin C was calculated with the aid of quantitative analysis. According to the population balance equation under unsteady state, the rates of nucleation and growth were determined. The parameters of crystallization kinetics equations were estimated by regression of experimental data. Crystal morphology and size were determined with x-ray diffraction and TA Ⅱ Coulter Counter.
基金Supported by the National Science Foundation for Excellent Young Scholars (51222601), the International Collaborating Project Funded by the Foundation of Science and Technology Commission of Shanghai Municipality (11160706000), the Program for New Century Excellent Talents in University by the Ministry of Education of China and the Shanghai Pujiang Program of China.
文摘This paper focuses on the development of three types of activated carbon (AC) adsorbents, i.e. granular AC, consolidated AC with chemical binder, and consolidated AC with expanded natural graphite (ENG). Their thermal conductivity was investigated with the steady-state heat source method and the permeability was tested with nitrogen as the gas source. Results show that the thermal conductivity of granular AC with different sizes al-most maintains a constant at 0.36 W-(m.K)-', while the value modestly increases to 0.40 W.(m.K)-' for the con- solidated AC with chemical binder. The consolidated AC with ENG at the density of 600 kg. m-3 shows the best heat transfer performance and their thermal conductivity vary from 2.08 W-(m.K)- to 2.61 W. (m.K)-1 according toits fraction of AC. However, the granular AC and consolidated AC with chemical binder show the better permeabil- ity performance than consolidated AC with ENG binder whose permeability changes from 6.98x10-13 m2 to 5.16x10TM m2 and the maximum occurs when the content of AC reaches 71.4% (by mass). According to the differ- ent thermal properties, the refrigeration application of three types of adsorbents is analyzed.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10447116 and 10325521 and the China Postdoctoral Science Foundation under Grant No. 2005038316
文摘The entanglement properties of a three-spin X X Z Heisenberg chain with three-spin interaction are studied by means of concurrence of pairwise entanglement. We show that ground-state pairwise entanglement, pairwise thermal entanglement, or quantum phase transition is not present in antiferromagnetic spin chain. For the ferromagnetic case, quantum phase transition takes place at A = 1 for anisotropic interaction and at some values of three-spin coupling strength, and pairwise thermal entanglement increases when the value of J/T increases and with anisotropic interaction and three-spin interaction decrease. In addition, we find that increasing the anisotropic interaction and the three-spin interaction will decrease critical temperature.
基金Supported by the National Natural Science Foundation of China(21076042)Research Grants Council of Hong Kong SAR (RGC 600704)
文摘Freeze drying or lyophilization of aqueous solutions is widely used in pharmaceutical industry. The in-creased importance Of the process is gaining a worldwide interest of research. A growing body of literature has demonstrated that the scientific approach can result in improved product quality with minimum trial and error em-piricism. Formulation and process development need a systematical understanding of the physical chemistry of freezing and freeze drying, material science and mechanisms of heat and mass transfer. This paper presents an overview on freeze ding of aqueous solutions based on publications in the past few decades. The important issuesof the process are analyzed.
基金Funded by 863 project (NO:2002AA107493)youthfounda-tion project of UESTC(NO:JX03018)
文摘The thermal distortion of an optical reflector surface due to the changing sunlight in a space environment will cause shift and spreading of its reflected focus and thereby influence the performance of space-to-ground laser communication links. Based on the characteristics of a low orbit satellite, the normal shift of a plan mirror caused by thermal distortion is analyzed with the software of the ANSYS of finite element analysis. A general expression of the transmitted beam from a distorted reflector surface and a counting formula for the shifts of the focus center before and after thermal distortion are deduced. The result of simulation shews that the magnitude order of the normal shift of the antenna mirror surface can be as high as tens of urad. The worse the mirror thermal distortion is, the larger the shift of the received focus center is. And the change of the shifts does not obey a linear rule.