Photolithography experiments are performed by means of an optical phase mask with electrooptically tunable phase step. The phase mask consists of a 2-dimensional hexagonal lattice of inverted ferroelectric domains fab...Photolithography experiments are performed by means of an optical phase mask with electrooptically tunable phase step. The phase mask consists of a 2-dimensional hexagonal lattice of inverted ferroelectric domains fabricated on a z-cut/ithium niobate substrate. The electro-optically tunable phase step, between inverted domain, is obtained by the application of an external electric field along the z axis of the crystal via transparent electrodes. The collimated beam of an argon laser passes through the phase mask and the near field intensity patterns, at different planes of the Talbot length and for different values of the applied voltage, are used for photolithographic experiments. Preliminary results are shown and further applications are discussed.展开更多
The hollow-core photonic crystal fibers (HC-PCFs) with integrity structure have been fabricated with an improved twice stack-and-draw technique. The transmission spectrum shows that five photonic band-gaps within 45...The hollow-core photonic crystal fibers (HC-PCFs) with integrity structure have been fabricated with an improved twice stack-and-draw technique. The transmission spectrum shows that five photonic band-gaps within 450-1100 nm have been obtained.And the green fight transmission in the HC-PCFs has been observed remarkably.展开更多
Optical microscopy, and scanning electron microscopy in conjunction with energy dispersed X-ray spectrometry (SEM-EDX), have been used to study the minerals and the concentrations of 12 trace elements in the No.14 c...Optical microscopy, and scanning electron microscopy in conjunction with energy dispersed X-ray spectrometry (SEM-EDX), have been used to study the minerals and the concentrations of 12 trace elements in the No.14 coal from the Huolinhe mine, Inner Mongolia China. The distribution, affinity and removability of the trace elements were studied by float-sink experiments and petrological methods. A high mineral content, dominated by clay minerals, was found in the No.14 coal from the Huolinhe mine. The concentrations of As, Sb and Hg are relatively high compared to the average values for Chinese coals. As, Cr, Hg, Li, Mn, Pb are mainly associated with the minerals while Cd, Co, Ni, Sb, and Se are evenly distributed between the minerals and the organic matter. Be and Ba are mainly distributed in the minerals with a minor proportion in the organic matter. Most elements have a low organic affinity, although Sb, Se, Co, Cd, Ni are closely integrated with the organic matter. High theoretical removabilities are indicated for most trace elements. So it may be possible to lower the concentrations of trace elements during coal preparation.展开更多
The adsorptive behavior of nanometer attapulgite modified by acid to Pb(Ⅱ) was investigated by flame atomic absorption spectrometry (FAAS) in this paper. The mainly effect parameters ott the adsorptive efficiency...The adsorptive behavior of nanometer attapulgite modified by acid to Pb(Ⅱ) was investigated by flame atomic absorption spectrometry (FAAS) in this paper. The mainly effect parameters ott the adsorptive efficiency of Pb(Ⅱ), such as the acidity of the solution, the amount of attapulgite, oscillation time and static time were studied. Also the influencing factors of the recovery efficiency of Pb(Ⅱ), including the concentration of hydrochloric acid, the volume of hydrochloric acid, oscillation time and static time were investigated. The adsorptive capacity of Pb(Ⅱ) on nanometer attapulgite was 26.5mg/g and the adsorptive capacity of first cycle and second cycle regenerated nanometer attapulgite were 26.5mg/g and 26.3mg/g, respectively. The results obtained indicated that the regenerated effect was good.展开更多
Presented the fiber Bragg grating (FBG) sensors for rock strain monitoring in the 1.2 m long plane stress model of the simulation experiment. In the past, for the lack of appropriate technique to measure the deforma...Presented the fiber Bragg grating (FBG) sensors for rock strain monitoring in the 1.2 m long plane stress model of the simulation experiment. In the past, for the lack of appropriate technique to measure the deformation of rock structures, the measurement of deflection was restricted to just a few discrete points along rock, and the measuring points were limited to the location installed with displacement transducers. We developed a method to monitor the deformation of rock structures using fiber optical Bragg grating strain sensors. The sensors were embedded in rock layers of simulation experiment before the materials were put in. These sensors were then used to monitor the experienced strain with different face advancing distance. The test results indicate that, if properly installed, FBG sensors can survive under severe conditions associated with embedment process and yield accurate measurements of strains response. At the same time, we make comparisons of the data obtained by FBG sensors with those by centesimal gauge. The interest in FBG sensors was motivated by the potential advantages that they can offer more than existing sensing technologies.展开更多
A new definition of the alternative coherent-mode representation of a random planar source with the a priori unknown statistical properties is proposed. This definition is based on the measurements of the source cross...A new definition of the alternative coherent-mode representation of a random planar source with the a priori unknown statistical properties is proposed. This definition is based on the measurements of the source cross-spectral density followed by the optimal approximation of the obtained results in the chosen basis of modal functions. The proposed definition is illustrated by the results of numerical simulation.展开更多
A novel thermal-assisted ultra-violet(UV) photocatalysis digestion method for the determination of total phosphorus(TP) in water samples was introduced in this work. The photocatalytic experiments for TP digestion wer...A novel thermal-assisted ultra-violet(UV) photocatalysis digestion method for the determination of total phosphorus(TP) in water samples was introduced in this work. The photocatalytic experiments for TP digestion were conducted using a 365 nm wavelength UV light and Ti O2 particles as the photocatalyst. Sodium tripolyphosphate and sodium glycerophosphate were used as the typical components of TP and the digested samples were then determined by spectrophotometry after phosphomolybdenum blue reaction. The effects of operational parameters such as reaction time and temperature were studied for the digestion of TP and the kinetic analysis of two typical components was performed in this paper. The pseudo-first-order rate constants k of two phosphorus compounds at different temperatures were obtained and the Arrhenius equation was employed to explain the effect of temperature on rate constant k. Compared with the conventional thermal digestion method for TP detection, it was found that the temperature was decreased from 120 °C to 60 °C with same conversion rate and time in this thermal-assisted UV digestion method, which enabled the digestion process work at normal pressure. Compared with the individual ultra-violet(UV) photocatalysis process, the digestion time was also decreased from several hours to half an hour using the thermal-assisted UV digestion method. This method will not lead to secondary pollution since no oxidant was needed in the thermal-assisted UV photocatalysis digestion process, which made it more compatible with electrochemical detection of TP.展开更多
We propose an experimental scheme for implementing the optimal 1 → 3 real state cloning via linear optical elements. This method relies on one polarized qubit and two location qubits and is feasible with current expe...We propose an experimental scheme for implementing the optimal 1 → 3 real state cloning via linear optical elements. This method relies on one polarized qubit and two location qubits and is feasible with current experimental technology.展开更多
In this paper, we give an efficient physical realization of a double-slit duality quantum gate. Weak cross- Kerr nonlinearity is exploited here. The probability of success can reach 1/2. Asymmetrical slit duality cont...In this paper, we give an efficient physical realization of a double-slit duality quantum gate. Weak cross- Kerr nonlinearity is exploited here. The probability of success can reach 1/2. Asymmetrical slit duality control gate also can be constructed conveniently. The special quantum control gate could be realized easily in optical system by our current experimental technology.展开更多
When the organic vapors absorbed to the surface of porous silicon(PS), capillary condensation takes place due to the porous structure of the PS layer, accordingly resulting in the effective refractive index changing. ...When the organic vapors absorbed to the surface of porous silicon(PS), capillary condensation takes place due to the porous structure of the PS layer, accordingly resulting in the effective refractive index changing. For PS multi-layer microcavities, the different resonant peaks shift in the reflectivity spectrum of porous silicon microcavities(PSMs). The optical sensing model is set up by applying Bruggeman effective medium approximation theory, capillary condensation process and transfer matrix theoretically analytical method of one-dimensional photonic crystals. At the same time, comprehensively researched on are the sensing characteristics of PSMs which are exposed to give concentration organic vapors. At last, made is the theoretical simulation for sensing model of the PSMs in case of saturation by using computer numerical calculation, and found is the linearity relation between the refractive index of organic solvent and the peak-shift. At the same time deduced is the peak-shift as a function of the concentration of ethanol vapors.展开更多
To improve the machinability of optical glass and achieve optical parts with satisfied surface quality and dimensional accuracy, scratching experiments with increasing cutting depth were conducted on glass SF6 to eval...To improve the machinability of optical glass and achieve optical parts with satisfied surface quality and dimensional accuracy, scratching experiments with increasing cutting depth were conducted on glass SF6 to evaluate the influence of cutting fluid properties on the machinability of glass. The sodium carbonate solution of 10.5% concentration was chosen as cutting fluid. Then the critical depths in scratching experiments with and without cutting fluid were examined. Based on this, turning experiments were carried out, and the surface quality of SF6 was assessed. Compared with the process of dry cutting, the main indexes of surface roughness decrease by over 70% totally. Experimental results indicated that the machinability of glass SF6 can be improved by using the sodium carbonate solution as cutting fluid.展开更多
Mechanics effect of laser thermal stress is a new manufacturing technology, which uses thermal stress by high power laser acted on the surface of metal material to produce stress field. The technologies such as sheet ...Mechanics effect of laser thermal stress is a new manufacturing technology, which uses thermal stress by high power laser acted on the surface of metal material to produce stress field. The technologies such as sheet metal formation by laser thermal stress, measurement by laser scratching and measurement by XRD (X-ray diffraction) are formed based on mechanics effects of laser thermal stress. The mechanisms of sheet metal formation by laser thermal stress, measurement by laser scratching and measurement by XRD are analyzed, and the theory of photo-mechanics manufacturing and detecting technologies based on laser thermal stress is originally put forward, whose experiment is primitively researched, and the manufacturing theory by mechanics effects of laser thermal stress is established.展开更多
In this letter, we propose a scheme of a special quantum optical Fredkin gate assisted by optical manip- ulations and postselection from the coincidence measurements, and then modify it with cross-Kerr nonlinearities ...In this letter, we propose a scheme of a special quantum optical Fredkin gate assisted by optical manip- ulations and postselection from the coincidence measurements, and then modify it with cross-Kerr nonlinearities to be suitable for the realization of all possible positive operator-valued measurements of bipartite polarization states. This scheme is feasible in the lab with the current experimental technology.展开更多
Bionics was applied in the design of the impregnated diamond bit. Based on previous resehrch and the 63# bit matrix formula, a new non-smooth bionic impregnated diamond bit with a single circular ring was designed and...Bionics was applied in the design of the impregnated diamond bit. Based on previous resehrch and the 63# bit matrix formula, a new non-smooth bionic impregnated diamond bit with a single circular ring was designed and manufactured, and also tested indoor. The results were satisfactory. During its shape contacted surface system, non-smooth shape display some structure merits such as decreasing resistance. It was obvious that the drilling efficiency of the bionics bit is much higher than that of ordinary's one, and so does the working life of bionic bit.展开更多
With the widespread application of radionuclide ^235U(VI), it is inevitable that part of U(VI) is released into the natural environment. The potential toxicity and irreversibility impact on the natural environment...With the widespread application of radionuclide ^235U(VI), it is inevitable that part of U(VI) is released into the natural environment. The potential toxicity and irreversibility impact on the natural environment has become one of the most forefront pollution problems in nuclear energy utilization. In this work, rod-like metal-organic framework (MOF-5) nanomaterial was synthesized by a solvothermal method and applied to efficiently adsorb U(VI) from aqueous solutions. The batch experimental results showed that the sorp- tion of U(Vl) on MOF-5 was strongly dependent on pH and independent of ionic strength, indicating that the dominant interaction mechanism was inner-sphere surface complexation and electrostatic interac- tion. The maximum sorption capacity of U(Vl) on MOF-5 was 237.0 mg]g at pH 5.0 and T = 298 K, and the sorption equilibrium reached within 5 rain. The thermodynamic parameters indicated that the removal of U(VI) on MOF-5 was a spontaneous and endothermic process. Additionally, the FT-IR and XPS analyses implied that the high sorption capacity of U(Vl) on MOF-5 was mainly attributed to the abundant oxygen-containing functional groups (i.e., C-O and C=O). Such a facile preparation method and efficient removal performance highlighted the application of MOF-5 as a candidate for rapid and efficient radionuclide contamination's elimination in practical applications.展开更多
The "lab-on-fiber" concept envisions novel and highly functionalized technological platforms completely integrated in a single optical fiber that would allow the development of advanced devices, components and sub-s...The "lab-on-fiber" concept envisions novel and highly functionalized technological platforms completely integrated in a single optical fiber that would allow the development of advanced devices, components and sub-systems to be incorporated in modem optical systems for communication and sensing applications. The realization of integrated optical fiber devices requires that several structures and materials at nano- and micro-scale are constructed, embedded and connected all together to provide the necessary physical connections and light-matter interactions. This paper reviews the strategies, the main achievements and related devices in the lab-on-fiber roadmap discussing perspectives and challenges that lie ahead.展开更多
The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical(int...The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical(interferometry and schlieren method) and pneumatic measurements provide more information about the behaviour and nature of basic phenomena occurring in the profile cascade flow field. The numerical simulation was carried out by means of the EARSM turbulence model according to Hellsten [5] completed by the bypass transition model with the algebraic equation for the intermittency coefficient proposed by Straka and P?íhoda [6] and implemented into the in-house numerical code. The investigation was focused particularly on the effect of shock waves on the shear layer development including the laminar/turbulent transition. Interactions of shock waves with shear layers on both sides of the blade result usually in the transition in attached and/ or separated flow and so to the considerable impact to the flow structure and energy losses in the blade cascade.展开更多
Ground-satellite quantum key distribution(QKD)is a feasible way to implement global-scale quantum communication.Herein we propose an approach to dynamically compensate the polarization of the photons when passing thro...Ground-satellite quantum key distribution(QKD)is a feasible way to implement global-scale quantum communication.Herein we propose an approach to dynamically compensate the polarization of the photons when passing through the optical telescope used in ground-satellite QKD.Our results experimentally demonstrate that the fidelity of any polarization state after dynamic compensation can be achieved by more than 99.5%,which fulfills the requirements of ground-satellite QKD.展开更多
We experimentally study optical homodyne and heterodyne detections with the same setup, which is flexible to manipulate the signal sideband modulation. When the modulation only generates a single signal sideband, the ...We experimentally study optical homodyne and heterodyne detections with the same setup, which is flexible to manipulate the signal sideband modulation. When the modulation only generates a single signal sideband, the light field measurement by mixing the single sideband at ω0 ±? with a strong local oscillator at the carrier frequency ω0on a beam splitter becomes balanced heterodyne detection. When two signal sidebands at ω0 ±? are generated and the relative phase of the two sidebands is locked, this measurement corresponds to optical balanced homodyne detection. With this setup, we may confirm directly that the signal-to-noise ratio with heterodyne detection is two-fold worse than that with homodyne detection. This work will have important applications in quantum state measurement and quantum information.展开更多
基金This research was partially funded by the MIUR within the FIRB project ( No. RBNE01KZ94 )partially by the MIUR project(No.77 DD N.1105/2002).
文摘Photolithography experiments are performed by means of an optical phase mask with electrooptically tunable phase step. The phase mask consists of a 2-dimensional hexagonal lattice of inverted ferroelectric domains fabricated on a z-cut/ithium niobate substrate. The electro-optically tunable phase step, between inverted domain, is obtained by the application of an external electric field along the z axis of the crystal via transparent electrodes. The collimated beam of an argon laser passes through the phase mask and the near field intensity patterns, at different planes of the Talbot length and for different values of the applied voltage, are used for photolithographic experiments. Preliminary results are shown and further applications are discussed.
基金the National Key Basic Research Special Foundation of China (Grant No. 2003CB3149 05)the National Nature Science Foundation of China (Grant No. 60637010)
文摘The hollow-core photonic crystal fibers (HC-PCFs) with integrity structure have been fabricated with an improved twice stack-and-draw technique. The transmission spectrum shows that five photonic band-gaps within 450-1100 nm have been obtained.And the green fight transmission in the HC-PCFs has been observed remarkably.
文摘Optical microscopy, and scanning electron microscopy in conjunction with energy dispersed X-ray spectrometry (SEM-EDX), have been used to study the minerals and the concentrations of 12 trace elements in the No.14 coal from the Huolinhe mine, Inner Mongolia China. The distribution, affinity and removability of the trace elements were studied by float-sink experiments and petrological methods. A high mineral content, dominated by clay minerals, was found in the No.14 coal from the Huolinhe mine. The concentrations of As, Sb and Hg are relatively high compared to the average values for Chinese coals. As, Cr, Hg, Li, Mn, Pb are mainly associated with the minerals while Cd, Co, Ni, Sb, and Se are evenly distributed between the minerals and the organic matter. Be and Ba are mainly distributed in the minerals with a minor proportion in the organic matter. Most elements have a low organic affinity, although Sb, Se, Co, Cd, Ni are closely integrated with the organic matter. High theoretical removabilities are indicated for most trace elements. So it may be possible to lower the concentrations of trace elements during coal preparation.
文摘The adsorptive behavior of nanometer attapulgite modified by acid to Pb(Ⅱ) was investigated by flame atomic absorption spectrometry (FAAS) in this paper. The mainly effect parameters ott the adsorptive efficiency of Pb(Ⅱ), such as the acidity of the solution, the amount of attapulgite, oscillation time and static time were studied. Also the influencing factors of the recovery efficiency of Pb(Ⅱ), including the concentration of hydrochloric acid, the volume of hydrochloric acid, oscillation time and static time were investigated. The adsorptive capacity of Pb(Ⅱ) on nanometer attapulgite was 26.5mg/g and the adsorptive capacity of first cycle and second cycle regenerated nanometer attapulgite were 26.5mg/g and 26.3mg/g, respectively. The results obtained indicated that the regenerated effect was good.
基金National Natural Science Foundation of PRC(50374055)Shaanxi Key Lab of Ground Control(02JS43)
文摘Presented the fiber Bragg grating (FBG) sensors for rock strain monitoring in the 1.2 m long plane stress model of the simulation experiment. In the past, for the lack of appropriate technique to measure the deformation of rock structures, the measurement of deflection was restricted to just a few discrete points along rock, and the measuring points were limited to the location installed with displacement transducers. We developed a method to monitor the deformation of rock structures using fiber optical Bragg grating strain sensors. The sensors were embedded in rock layers of simulation experiment before the materials were put in. These sensors were then used to monitor the experienced strain with different face advancing distance. The test results indicate that, if properly installed, FBG sensors can survive under severe conditions associated with embedment process and yield accurate measurements of strains response. At the same time, we make comparisons of the data obtained by FBG sensors with those by centesimal gauge. The interest in FBG sensors was motivated by the potential advantages that they can offer more than existing sensing technologies.
文摘A new definition of the alternative coherent-mode representation of a random planar source with the a priori unknown statistical properties is proposed. This definition is based on the measurements of the source cross-spectral density followed by the optimal approximation of the obtained results in the chosen basis of modal functions. The proposed definition is illustrated by the results of numerical simulation.
基金Supported by the National Natural Science Foundation(61372053)the National High Technology Research and Development Program(2012AA040506)
文摘A novel thermal-assisted ultra-violet(UV) photocatalysis digestion method for the determination of total phosphorus(TP) in water samples was introduced in this work. The photocatalytic experiments for TP digestion were conducted using a 365 nm wavelength UV light and Ti O2 particles as the photocatalyst. Sodium tripolyphosphate and sodium glycerophosphate were used as the typical components of TP and the digested samples were then determined by spectrophotometry after phosphomolybdenum blue reaction. The effects of operational parameters such as reaction time and temperature were studied for the digestion of TP and the kinetic analysis of two typical components was performed in this paper. The pseudo-first-order rate constants k of two phosphorus compounds at different temperatures were obtained and the Arrhenius equation was employed to explain the effect of temperature on rate constant k. Compared with the conventional thermal digestion method for TP detection, it was found that the temperature was decreased from 120 °C to 60 °C with same conversion rate and time in this thermal-assisted UV digestion method, which enabled the digestion process work at normal pressure. Compared with the individual ultra-violet(UV) photocatalysis process, the digestion time was also decreased from several hours to half an hour using the thermal-assisted UV digestion method. This method will not lead to secondary pollution since no oxidant was needed in the thermal-assisted UV photocatalysis digestion process, which made it more compatible with electrochemical detection of TP.
文摘We propose an experimental scheme for implementing the optimal 1 → 3 real state cloning via linear optical elements. This method relies on one polarized qubit and two location qubits and is feasible with current experimental technology.
基金Supported by National Natural Science Foundation of China under Grant Nos.10775076 and 10874098the National Basic Research Program of China under Grant No.2009CB929402the Specialized Research Fund for the Doctoral Program of Education Ministry of China under Grant No.20060003048
文摘In this paper, we give an efficient physical realization of a double-slit duality quantum gate. Weak cross- Kerr nonlinearity is exploited here. The probability of success can reach 1/2. Asymmetrical slit duality control gate also can be constructed conveniently. The special quantum control gate could be realized easily in optical system by our current experimental technology.
文摘When the organic vapors absorbed to the surface of porous silicon(PS), capillary condensation takes place due to the porous structure of the PS layer, accordingly resulting in the effective refractive index changing. For PS multi-layer microcavities, the different resonant peaks shift in the reflectivity spectrum of porous silicon microcavities(PSMs). The optical sensing model is set up by applying Bruggeman effective medium approximation theory, capillary condensation process and transfer matrix theoretically analytical method of one-dimensional photonic crystals. At the same time, comprehensively researched on are the sensing characteristics of PSMs which are exposed to give concentration organic vapors. At last, made is the theoretical simulation for sensing model of the PSMs in case of saturation by using computer numerical calculation, and found is the linearity relation between the refractive index of organic solvent and the peak-shift. At the same time deduced is the peak-shift as a function of the concentration of ethanol vapors.
基金Supported by National Natural Science Foundation of China (No. 50775057)
文摘To improve the machinability of optical glass and achieve optical parts with satisfied surface quality and dimensional accuracy, scratching experiments with increasing cutting depth were conducted on glass SF6 to evaluate the influence of cutting fluid properties on the machinability of glass. The sodium carbonate solution of 10.5% concentration was chosen as cutting fluid. Then the critical depths in scratching experiments with and without cutting fluid were examined. Based on this, turning experiments were carried out, and the surface quality of SF6 was assessed. Compared with the process of dry cutting, the main indexes of surface roughness decrease by over 70% totally. Experimental results indicated that the machinability of glass SF6 can be improved by using the sodium carbonate solution as cutting fluid.
基金this research from the Scientific Research Fund of Jiangsu Polytechnic University(GrantNo.ZMF07020042)Fund of Jiangsu ProvincialKey Laboratory for Science and Technology of Photo-manufacroring (Grant No.GZ-1-02)the NaturalScience Foundation of the Jiangsu Higher EducationInstitutions of China( Grant No. 08KJB430002 ) is gratefully acknowledged.
文摘Mechanics effect of laser thermal stress is a new manufacturing technology, which uses thermal stress by high power laser acted on the surface of metal material to produce stress field. The technologies such as sheet metal formation by laser thermal stress, measurement by laser scratching and measurement by XRD (X-ray diffraction) are formed based on mechanics effects of laser thermal stress. The mechanisms of sheet metal formation by laser thermal stress, measurement by laser scratching and measurement by XRD are analyzed, and the theory of photo-mechanics manufacturing and detecting technologies based on laser thermal stress is originally put forward, whose experiment is primitively researched, and the manufacturing theory by mechanics effects of laser thermal stress is established.
基金supported by the Research Projects of Huaqiao University under Grant No.07BS406
文摘In this letter, we propose a scheme of a special quantum optical Fredkin gate assisted by optical manip- ulations and postselection from the coincidence measurements, and then modify it with cross-Kerr nonlinearities to be suitable for the realization of all possible positive operator-valued measurements of bipartite polarization states. This scheme is feasible in the lab with the current experimental technology.
文摘Bionics was applied in the design of the impregnated diamond bit. Based on previous resehrch and the 63# bit matrix formula, a new non-smooth bionic impregnated diamond bit with a single circular ring was designed and manufactured, and also tested indoor. The results were satisfactory. During its shape contacted surface system, non-smooth shape display some structure merits such as decreasing resistance. It was obvious that the drilling efficiency of the bionics bit is much higher than that of ordinary's one, and so does the working life of bionic bit.
基金supported by the National Key Research and Development Program of China(2017YFA0207002)the National Natural Science Foundation of China(21577032,21607042)+1 种基金the Fundamental Research Funds for the Central Universities(2018ZD11,2018MS114,and 2016MS02)the Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection and the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘With the widespread application of radionuclide ^235U(VI), it is inevitable that part of U(VI) is released into the natural environment. The potential toxicity and irreversibility impact on the natural environment has become one of the most forefront pollution problems in nuclear energy utilization. In this work, rod-like metal-organic framework (MOF-5) nanomaterial was synthesized by a solvothermal method and applied to efficiently adsorb U(VI) from aqueous solutions. The batch experimental results showed that the sorp- tion of U(Vl) on MOF-5 was strongly dependent on pH and independent of ionic strength, indicating that the dominant interaction mechanism was inner-sphere surface complexation and electrostatic interac- tion. The maximum sorption capacity of U(Vl) on MOF-5 was 237.0 mg]g at pH 5.0 and T = 298 K, and the sorption equilibrium reached within 5 rain. The thermodynamic parameters indicated that the removal of U(VI) on MOF-5 was a spontaneous and endothermic process. Additionally, the FT-IR and XPS analyses implied that the high sorption capacity of U(Vl) on MOF-5 was mainly attributed to the abundant oxygen-containing functional groups (i.e., C-O and C=O). Such a facile preparation method and efficient removal performance highlighted the application of MOF-5 as a candidate for rapid and efficient radionuclide contamination's elimination in practical applications.
文摘The "lab-on-fiber" concept envisions novel and highly functionalized technological platforms completely integrated in a single optical fiber that would allow the development of advanced devices, components and sub-systems to be incorporated in modem optical systems for communication and sensing applications. The realization of integrated optical fiber devices requires that several structures and materials at nano- and micro-scale are constructed, embedded and connected all together to provide the necessary physical connections and light-matter interactions. This paper reviews the strategies, the main achievements and related devices in the lab-on-fiber roadmap discussing perspectives and challenges that lie ahead.
基金supported by the Technology Agency of the Czech Republic under the grant TA03020277by the Czech Science Foundation under grant P101/12/1271
文摘The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical(interferometry and schlieren method) and pneumatic measurements provide more information about the behaviour and nature of basic phenomena occurring in the profile cascade flow field. The numerical simulation was carried out by means of the EARSM turbulence model according to Hellsten [5] completed by the bypass transition model with the algebraic equation for the intermittency coefficient proposed by Straka and P?íhoda [6] and implemented into the in-house numerical code. The investigation was focused particularly on the effect of shock waves on the shear layer development including the laminar/turbulent transition. Interactions of shock waves with shear layers on both sides of the blade result usually in the transition in attached and/ or separated flow and so to the considerable impact to the flow structure and energy losses in the blade cascade.
基金supported by the National Natural Science Foundation of China(Grant No.11274296)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY13F050007)K.C.Wong Magna Fund in Ningbo University
文摘Ground-satellite quantum key distribution(QKD)is a feasible way to implement global-scale quantum communication.Herein we propose an approach to dynamically compensate the polarization of the photons when passing through the optical telescope used in ground-satellite QKD.Our results experimentally demonstrate that the fidelity of any polarization state after dynamic compensation can be achieved by more than 99.5%,which fulfills the requirements of ground-satellite QKD.
基金supported by the National Basic Research Program of China(Grant No.2011CB921601)the National Natural Science Foundation of China(Grant Nos.10725416 and 60821004)
文摘We experimentally study optical homodyne and heterodyne detections with the same setup, which is flexible to manipulate the signal sideband modulation. When the modulation only generates a single signal sideband, the light field measurement by mixing the single sideband at ω0 ±? with a strong local oscillator at the carrier frequency ω0on a beam splitter becomes balanced heterodyne detection. When two signal sidebands at ω0 ±? are generated and the relative phase of the two sidebands is locked, this measurement corresponds to optical balanced homodyne detection. With this setup, we may confirm directly that the signal-to-noise ratio with heterodyne detection is two-fold worse than that with homodyne detection. This work will have important applications in quantum state measurement and quantum information.