Dispersion experiments were conducted to study the influence of metallic cations on the dispersibility of diaspore. The reaction mechanisms were investigated based on the analysis of zeta (ξ) potential and calculat...Dispersion experiments were conducted to study the influence of metallic cations on the dispersibility of diaspore. The reaction mechanisms were investigated based on the analysis of zeta (ξ) potential and calculations of solution chemistry and DLVO theory. The results show that the valence of cations, instead of the cation type, plays an important role in the dispersibility of diaspore The impact of multivalent metallic cations is greater than that of monovalent cations. In the presence of Ca^2+ and Mg^2+, the dispersion of diaspore doesn't change in the range of pH value below 10. However, Ca^2+ and Mg^2+ may induce strong coagulation of particles when pH value is higher than 10. The adsorption of species of calcium and magnesium ions on diaspore can cause the compression of electric double layer, the decrease of the absolute value of zeta potential and the repulsion force between diaspore particles. The new IEP (isoelectric point) appeared at pH value of 11 may attribute to the adsorption of Mg(OH)2(s).展开更多
The mechanical properties and the point defect energy of magnesium hydroxide(Mg(OH)2) were studied using the molecular dynamics. Moreover, the microelectronic structure of Mg(OH)2 with point defects in the bulk ...The mechanical properties and the point defect energy of magnesium hydroxide(Mg(OH)2) were studied using the molecular dynamics. Moreover, the microelectronic structure of Mg(OH)2 with point defects in the bulk and on its surface were investigated using the first principles. The simulation results indicate that Mg(OH)2 was easily modified by other cations because of its strong, favorable interstitial and substitution defects via point defect energy calculation. Mg(OH)2 can provide high-efficiency flame retardancy because of the strong OH(OH Schottky defect) or H bond(H Frenkel defect and Schottky defect). The potential model of Mg(OH)2 was established, and molecular dynamics simulation was used to investigate the relations between the crystal structure and the mechanical properties. Mg(OH)2 with special morphology such as nano-sheets was a prior consideration to maintain the composite mechanical properties. The detailed electronic structures of Mg(OH)2 with defects were determined. This work may provide theoretical guidance for choosing dopant element and reveal the element doping mechanism of Mg(OH)2.展开更多
Molecular dynamics simulations on octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) at 303-383 K and atmospheric pressure are carried out under NPT ensemble and COMPASS force field, the equilibrium structures a...Molecular dynamics simulations on octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) at 303-383 K and atmospheric pressure are carried out under NPT ensemble and COMPASS force field, the equilibrium structures at elevated temperatures were obtained and showed that the stacking style of molecules don't change. The coefficient of thermal expansion (CTE) values were calculated by linear fitting method. The results show that the CTE values are close to the experimental results and show anisotropy. The total energies of HMX cells with separately increasing expansion rates (100%-105%) along each crystallographic axis was calculated by periodic density functional theory method, the results of the energy change rates are anisotropic, and the correlation equations of energy change-CTE values are established. Thus the hypostasis of the anisotropy of HMX crystal's thermal expansion, the determinate molecular packing style, is elucidated.展开更多
Among all segmentation techniques, Otsu thresholding method is widely used. Line intercept histogram based Otsu thresholding method(LIH Otsu method) can be more resistant to Gaussian noise, highly efficient in computi...Among all segmentation techniques, Otsu thresholding method is widely used. Line intercept histogram based Otsu thresholding method(LIH Otsu method) can be more resistant to Gaussian noise, highly efficient in computing time, and can be easily extended to multilevel thresholding. But when images contain salt-and-pepper noise, LIH Otsu method performs poorly. An improved LIH Otsu method(ILIH Otsu method) is presented, which can be more resistant to Gaussian noise and salt-and-pepper noise. Moreover, it can be easily extended to multilevel thresholding. In order to improve the efficiency, the optimization algorithm based on the kinetic-molecular theory(KMTOA) is used to determine the optimal thresholds. The experimental results show that ILIH Otsu method has stronger anti-noise ability than two-dimensional Otsu thresholding method(2-D Otsu method), LIH Otsu method, K-means clustering algorithm and fuzzy clustering algorithm.展开更多
H‐ZSM‐5 zeolite is a typical catalyst for methanol‐to‐olefins(MTO)conversion.Although the performance of zeolite catalysts for MTO conversion is related to the actual location of acid sites in the zeolite framewor...H‐ZSM‐5 zeolite is a typical catalyst for methanol‐to‐olefins(MTO)conversion.Although the performance of zeolite catalysts for MTO conversion is related to the actual location of acid sites in the zeolite framework,the catalytic roles of the acid sites in different pore channels of the H‐ZSM‐5 zeolite are not well understood.In this study,the MTO reaction network,involving the aromatic cycle,alkene cycle,and aromatization process,and also the diffusion behavior of methanol feedstock and olefin and aromatic products at different acid sites in the straight channel,sinusoidal channel,and intersection cavity of H‐ZSM‐5 zeolite was comparatively investigated using density functional theory calculations and molecular dynamic simulations.The results indicated that the aromatic cycle and aromatization process occurred preferentially at the acid sites in the intersection cavities with a much lower energy barrier than that at the acid sites in the straight and sinusoidal channels.In contrast,the formation of polymethylbenzenes was significantly suppressed at the acid sites in the sinusoidal and straight channels,whereas the alkene cycle can occur at all three types of acid sites with similar energy barriers and probabilities.Consequently,the catalytic performance of H‐ZSM‐5 zeolite for MTO conversion,including activity and product selectivity,can be regulated properly through the purposive alteration of the acid site distribution,viz.,the location of Al in the zeolite framework.This study helps to elucidate the relation between the catalytic performance of different acid sites in the H‐ZSM‐5 zeolite framework for MTO conversion,which should greatly benefit the design of efficient catalyst for methanol conversion.展开更多
Different structures of graphite oxide (GO) with and without water are optimized by density functional theory. Without H20 in interlayer space, the optimized interlayer distances are about 6A, smaller than the exper...Different structures of graphite oxide (GO) with and without water are optimized by density functional theory. Without H20 in interlayer space, the optimized interlayer distances are about 6A, smaller than the experimental values of 6.5-7A. On the other hand, the interlayer distances of hydrated graphite oxide structures are in good agreement with experimental observations. Based on the optimized GO structures, we then simulate the immersion of GO in water or methanol by molecular dynamics. For the dry GO, water and methanol molecules do not enter the nanopore. While for the hydrated GO, the liquid molecules enter the interlayer space and enlarge the interlayer distance, semi-quantitatively reproducing the experimental phenomena.展开更多
Traditionally, the optimization algorithm based on physics principles has some shortcomings such as low population diversity and susceptibility to local extrema. A new optimization algorithm based on kinetic-molecular...Traditionally, the optimization algorithm based on physics principles has some shortcomings such as low population diversity and susceptibility to local extrema. A new optimization algorithm based on kinetic-molecular theory(KMTOA) is proposed. In the KMTOA three operators are designed: attraction, repulsion and wave. The attraction operator simulates the molecular attraction, with the molecules moving towards the optimal ones, which makes possible the optimization. The repulsion operator simulates the molecular repulsion, with the molecules diverging from the optimal ones. The wave operator simulates the thermal molecules moving irregularly, which enlarges the searching spaces and increases the population diversity and global searching ability. Experimental results indicate that KMTOA prevails over other algorithms in the robustness, solution quality, population diversity and convergence speed.展开更多
The IR absorption, visible excited normal Raman, and UV-excited near-resonant Raman (UVRR) spectra of 1,1'-binaphthyl-2,2'-diamine (BINAM) were measured and analyzed. Density functional theory calculations were ...The IR absorption, visible excited normal Raman, and UV-excited near-resonant Raman (UVRR) spectra of 1,1'-binaphthyl-2,2'-diamine (BINAM) were measured and analyzed. Density functional theory calculations were carried out to investigate its vibrational frequencies, infrared absorption, normal Raman, and near-resonance Raman intensities. The observed Raman and IR bands of BINAM were assigned with respect to the local vibrations of substituted 2-naphthylamine. Several Raman bands of BINAM were found selectively enhanced in the UVRR in comparison with the normal Raman spectrum. Possible excited state geometry distortion was discussed based on the resonance Raman intensity analysis.展开更多
A perturbation theory model that describes splitting of the spectra in highly symmetrical molecular species in electrostatic field is proposed. An anahrmonie model of a two-dimensional oscillator having Kratzer potent...A perturbation theory model that describes splitting of the spectra in highly symmetrical molecular species in electrostatic field is proposed. An anahrmonie model of a two-dimensional oscillator having Kratzer potential energy function is used to model the molecular species and to represent the unperturbed system. A selection rule for the radial quantum number of the oscillator is derived. The eigenfunctions of a two-dimensional anharmonic oscillator in cylindrical coordinates are used for the matrix elements representing the probability for energy transitions in dipole approximation to be calculated. Several forms of perturbation operators are proposed to model the interaction between the polyatomic molecular species and an electrostatic field. It is found that the degeneracy is removed in the presence of the electric field and spectral splitting occurs. Anharmonic approximation for the unperturbed system is more accurate and reliable representation of a reaJ polyatomic molecular species.展开更多
Shell model molecular dynamic simulation with interatomic pair potential is utilized to investigate the elastic and thermodynamic properties of gallium nitride with hexagonal wurtzite structure (w-GaN) at high press...Shell model molecular dynamic simulation with interatomic pair potential is utilized to investigate the elastic and thermodynamic properties of gallium nitride with hexagonal wurtzite structure (w-GaN) at high pressure. The calculated elastic constants Cij at zero pressure and 300 K agree well with the experimental data and other calculated values. Meanwhile, the dependences of the relative volume V/Vo, elastic constants Cij, entropy S, enthalpy H, and heat capacities Cv and Up on pressure are successfully obtained. From the elastic constants obtained, we also calculate the shear modulus G, bulk modulus B, Young's modulus E, Poisson's ratio v, Debye temperature ΘD, and shear anisotropic factor Ashear on pressures.展开更多
In this work,we review recent progress on the view of potential energy surfaces and molecular dynamics study of water and its related reactions in the last decade or so.Some important gas-phase reactions of water with...In this work,we review recent progress on the view of potential energy surfaces and molecular dynamics study of water and its related reactions in the last decade or so.Some important gas-phase reactions of water with radicals,chemisorbed dissociative dynamics of water on solid surfaces,and statistical mechanics and vibrational spectrum simulations of water from clusters to the condensed phase have been introduced.The recently developed machine learning techniques,such as the neural networks in a combination of permutational invariant polynomials or fundamental invariants,the atomic neural networks framework,the gaussian approximation potentials with the smooth overlap of atomic position kernel,as well as the many-body expansion framework for the construction of highly accurate potential energy surfaces,have also been discussed.Finally,some suggestions have been provided for further improvement of the potential energy surfaces and dynamics methods of water-related systems.展开更多
A comprehensive study on various internal energies for the dipolar hard sphere fluids, including Stockmayer fluids, the mixtures of Lennard-Jones and Stockmayer and Stockmayer fluids and the electrolyte solutions is r...A comprehensive study on various internal energies for the dipolar hard sphere fluids, including Stockmayer fluids, the mixtures of Lennard-Jones and Stockmayer and Stockmayer fluids and the electrolyte solutions is reported based on the perturbation theory and mean spherical approximation. Compared with the results of molecular simulations, it is shown that the perturbation theory is better than the mean spherical approximation.展开更多
Carbon capture and storage technology have been rapidly developed to reduce the carbon dioxide(CO2)emission into the environment.It has been found that the amine-based organic molecules could absorb CO_(2) efficiently...Carbon capture and storage technology have been rapidly developed to reduce the carbon dioxide(CO2)emission into the environment.It has been found that the amine-based organic molecules could absorb CO_(2) efficiently and form the bicarbonate salts through hydrogen-bond(H-bond)interactions.Recently,the aqueous 1,3-diphenylguanidine(DPG)solution was developed to trap and convert CO_(2) to valuable chemicals under ambient conditions.However,how the DPG molecules interact with CO_(2) in an aqueous solution remains unclear.In this work,we perform molecular dynamics simulations to explore the atomistic details of CO_(2) in the aqueous DPG.The simulated results reveal that the protonated DPGH+and the bicarbonate anions prefer to form complexes through different H-bond patterns.These double H-bonds are quite stable in thermodynamics,as indicated from the accurate density functional theory calculations.This study is helpful to understand the catalytic mechanism of CO_(2) conversion in the aqueous DPG.展开更多
Density functional theory calculations together with ab initio molecular dynamics(AIMD)simulations have been used to study the solvation,diffusion and transformation of Li^(+)and LiO_(2)upon O_(2)reduction in three or...Density functional theory calculations together with ab initio molecular dynamics(AIMD)simulations have been used to study the solvation,diffusion and transformation of Li^(+)and LiO_(2)upon O_(2)reduction in three organic electrolytes.These processes are critical for the performance of Li-air batteries.Apart from studying the structure of the solvation shells in detail,AIMD simulations have been used to derive the diffusivity and together with the Blue Moon ensemble approach to explore LiO_(2)formation from Li^(+)and O_(2)−and the subsequent disproportionation of 2LiO_(2)into Li_(2)O_(2)+O_(2).By comparing the results of the simulations to gas phase calculations,the impact of electrolytes on these reactions is assessed which turns out to be more pronounced for the ionic species involved in these reactions.展开更多
Ashcroft's local empty core (EMC) model pseudopotential in the second-order perturbation theory is used to study the electron dispersion relation, the Fermi energy, and deviation in the Fermi energy from free elect...Ashcroft's local empty core (EMC) model pseudopotential in the second-order perturbation theory is used to study the electron dispersion relation, the Fermi energy, and deviation in the Fermi energy from free electron value for the liquid alkali metals and their equiatomic binary alloys for the first time. In the present computation, the use of pseudo-alloy-atom model (PAA) is proposed and found successful. The influence of the six different forms of the local field correction functions proposed by Hartree (H), Vashishta Singwi (VS), Taylor (T), lehimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) on the aforesaid electronic properties is examined explicitly, which reflects the varying effects of screening. The depth of the negative hump in the electron dispersion of liquid alkalis decreases in the order Li --→ K, except for Rb and Cs, it increases. The results of alloys are in predictive nature.展开更多
Intrinsic viscosity is one of the most fundamental properties of dilute polymer solutions; its study forms an integral part of the cornerstone of the modern macromolecular theory. However, a general theory applicable ...Intrinsic viscosity is one of the most fundamental properties of dilute polymer solutions; its study forms an integral part of the cornerstone of the modern macromolecular theory. However, a general theory applicable to any chain architectures and solvent conditions has remained elusive, due to the formidable challenges in the theoretical treatment of the long-range, many-body and accumulative hydrodynamic effects. Recently, Lijia An and coworkers at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, has developed a new approach that largely overcomes these challenges. Their new theory provides a simple and unified theoretical framework for describing the intrinsic viscosity of polymers with arbitrary architectures under any solvent conditions and forms the theoretical basis for inferring the polymer chain structure from intrinsic viscosity measurements. Comparisons with existing experimental data yield extensive, quantitative agreement.展开更多
A theoretical model extended from the Frenkel-Eyring molecular kinetic theory(MKT)was applied to describe the boundary slip on textured surfaces.The concept of the equivalent depth of potential well was adopted to cha...A theoretical model extended from the Frenkel-Eyring molecular kinetic theory(MKT)was applied to describe the boundary slip on textured surfaces.The concept of the equivalent depth of potential well was adopted to characterize the solid-liquid interactions on the textured surfaces.The slip behaviors on both chemically and topographically textured surfaces were investigated using molecular dynamics(MD)simulations.The extended MKT slip model is validated by our MD simulations under various situations,by constructing different complex surfaces and varying the surface wettability as well as the shear stress exerted on the liquid.This slip model can provide more comprehensive understanding of the liquid flow on atomic scale by considering the influence of the solid-liquid interactions and the applied shear stress on the nano-flow.Moreover,the slip velocity shear-rate dependence can be predicted using this slip model,since the nonlinear increase of the slip velocity under high shear stress can be approximated by a hyperbolic sine function.展开更多
Thermal vibration of single-layered graphene sheets (SLGSs) is investigated using plate model together with the law of equi-partition of energy and the molecular dynamics (MD) method based on the condensed-phase Optim...Thermal vibration of single-layered graphene sheets (SLGSs) is investigated using plate model together with the law of equi-partition of energy and the molecular dynamics (MD) method based on the condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force field.The in-plane stiffness and Poisson ratio of SLGSs are calculated by stretching SLGSs.The effective thickness of SLGSs is obtained by the MD simulations for the thermal vibration of SLGSs through the natural frequency.The root-mean-squared (RMS) amplitudes for SLGSs of differing temperatures and boundary conditions are calculated by the MD,and are compared with the results calculated by the thin plate model together with the law of equi-partition of energy.At the center of SLGSs,the thin plate theory can predict the MD results reasonably well.For the difference of bonding structure of the edge atoms,the deviation between the MD results and plate theory becomes more readily apparent near the edges of SLGSs.展开更多
基金Project (2005CB623701) supported by the National Basic Research Program of China
文摘Dispersion experiments were conducted to study the influence of metallic cations on the dispersibility of diaspore. The reaction mechanisms were investigated based on the analysis of zeta (ξ) potential and calculations of solution chemistry and DLVO theory. The results show that the valence of cations, instead of the cation type, plays an important role in the dispersibility of diaspore The impact of multivalent metallic cations is greater than that of monovalent cations. In the presence of Ca^2+ and Mg^2+, the dispersion of diaspore doesn't change in the range of pH value below 10. However, Ca^2+ and Mg^2+ may induce strong coagulation of particles when pH value is higher than 10. The adsorption of species of calcium and magnesium ions on diaspore can cause the compression of electric double layer, the decrease of the absolute value of zeta potential and the repulsion force between diaspore particles. The new IEP (isoelectric point) appeared at pH value of 11 may attribute to the adsorption of Mg(OH)2(s).
基金Projects(5117413820971088)supported by the National Natural Science Foundation of China+1 种基金Project(JCYJ20130329102720840)supported by Shenzhen Government’s Plan of Science and TechnologyChina
文摘The mechanical properties and the point defect energy of magnesium hydroxide(Mg(OH)2) were studied using the molecular dynamics. Moreover, the microelectronic structure of Mg(OH)2 with point defects in the bulk and on its surface were investigated using the first principles. The simulation results indicate that Mg(OH)2 was easily modified by other cations because of its strong, favorable interstitial and substitution defects via point defect energy calculation. Mg(OH)2 can provide high-efficiency flame retardancy because of the strong OH(OH Schottky defect) or H bond(H Frenkel defect and Schottky defect). The potential model of Mg(OH)2 was established, and molecular dynamics simulation was used to investigate the relations between the crystal structure and the mechanical properties. Mg(OH)2 with special morphology such as nano-sheets was a prior consideration to maintain the composite mechanical properties. The detailed electronic structures of Mg(OH)2 with defects were determined. This work may provide theoretical guidance for choosing dopant element and reveal the element doping mechanism of Mg(OH)2.
文摘Molecular dynamics simulations on octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) at 303-383 K and atmospheric pressure are carried out under NPT ensemble and COMPASS force field, the equilibrium structures at elevated temperatures were obtained and showed that the stacking style of molecules don't change. The coefficient of thermal expansion (CTE) values were calculated by linear fitting method. The results show that the CTE values are close to the experimental results and show anisotropy. The total energies of HMX cells with separately increasing expansion rates (100%-105%) along each crystallographic axis was calculated by periodic density functional theory method, the results of the energy change rates are anisotropic, and the correlation equations of energy change-CTE values are established. Thus the hypostasis of the anisotropy of HMX crystal's thermal expansion, the determinate molecular packing style, is elucidated.
基金Project(61440026)supported by the National Natural Science Foundation of ChinaProject(11KZ|KZ08062)supported by Doctoral Research Project of Xiangtan University,China
文摘Among all segmentation techniques, Otsu thresholding method is widely used. Line intercept histogram based Otsu thresholding method(LIH Otsu method) can be more resistant to Gaussian noise, highly efficient in computing time, and can be easily extended to multilevel thresholding. But when images contain salt-and-pepper noise, LIH Otsu method performs poorly. An improved LIH Otsu method(ILIH Otsu method) is presented, which can be more resistant to Gaussian noise and salt-and-pepper noise. Moreover, it can be easily extended to multilevel thresholding. In order to improve the efficiency, the optimization algorithm based on the kinetic-molecular theory(KMTOA) is used to determine the optimal thresholds. The experimental results show that ILIH Otsu method has stronger anti-noise ability than two-dimensional Otsu thresholding method(2-D Otsu method), LIH Otsu method, K-means clustering algorithm and fuzzy clustering algorithm.
文摘H‐ZSM‐5 zeolite is a typical catalyst for methanol‐to‐olefins(MTO)conversion.Although the performance of zeolite catalysts for MTO conversion is related to the actual location of acid sites in the zeolite framework,the catalytic roles of the acid sites in different pore channels of the H‐ZSM‐5 zeolite are not well understood.In this study,the MTO reaction network,involving the aromatic cycle,alkene cycle,and aromatization process,and also the diffusion behavior of methanol feedstock and olefin and aromatic products at different acid sites in the straight channel,sinusoidal channel,and intersection cavity of H‐ZSM‐5 zeolite was comparatively investigated using density functional theory calculations and molecular dynamic simulations.The results indicated that the aromatic cycle and aromatization process occurred preferentially at the acid sites in the intersection cavities with a much lower energy barrier than that at the acid sites in the straight and sinusoidal channels.In contrast,the formation of polymethylbenzenes was significantly suppressed at the acid sites in the sinusoidal and straight channels,whereas the alkene cycle can occur at all three types of acid sites with similar energy barriers and probabilities.Consequently,the catalytic performance of H‐ZSM‐5 zeolite for MTO conversion,including activity and product selectivity,can be regulated properly through the purposive alteration of the acid site distribution,viz.,the location of Al in the zeolite framework.This study helps to elucidate the relation between the catalytic performance of different acid sites in the H‐ZSM‐5 zeolite framework for MTO conversion,which should greatly benefit the design of efficient catalyst for methanol conversion.
基金ACKNOWLEDGMENTS This work is supported by the National Natural Science Foundation of China (No.20603032, No.20733004, No.21121003, No.91021004, and No.20933006), the Ministry of Science and Technology of China (No.2011CB921400), the National Excellent Doctoral Dissertation of China (No.200736), the Fundamental Research Funds for the Central Universities (No.WK2340000006, No.WK2060140005, and No.WK2060030012), and the USTC-HP HPC project.
文摘Different structures of graphite oxide (GO) with and without water are optimized by density functional theory. Without H20 in interlayer space, the optimized interlayer distances are about 6A, smaller than the experimental values of 6.5-7A. On the other hand, the interlayer distances of hydrated graphite oxide structures are in good agreement with experimental observations. Based on the optimized GO structures, we then simulate the immersion of GO in water or methanol by molecular dynamics. For the dry GO, water and methanol molecules do not enter the nanopore. While for the hydrated GO, the liquid molecules enter the interlayer space and enlarge the interlayer distance, semi-quantitatively reproducing the experimental phenomena.
基金Project(61174140)supported by the National Natural Science Foundation of ChinaProject(13JJA002)supported by Hunan Provincial Natural Science Foundation,ChinaProject(20110161110035)supported by the Doctoral Fund of Ministry of Education of China
文摘Traditionally, the optimization algorithm based on physics principles has some shortcomings such as low population diversity and susceptibility to local extrema. A new optimization algorithm based on kinetic-molecular theory(KMTOA) is proposed. In the KMTOA three operators are designed: attraction, repulsion and wave. The attraction operator simulates the molecular attraction, with the molecules moving towards the optimal ones, which makes possible the optimization. The repulsion operator simulates the molecular repulsion, with the molecules diverging from the optimal ones. The wave operator simulates the thermal molecules moving irregularly, which enlarges the searching spaces and increases the population diversity and global searching ability. Experimental results indicate that KMTOA prevails over other algorithms in the robustness, solution quality, population diversity and convergence speed.
基金This work was supported by the National Natural Science Foundation of China (No.21273211, No.21573208), USTC-NSRL Association Foundation (No.NSRLLHJJ(14-15-012), and the Supercomputation Center of USTC.
文摘The IR absorption, visible excited normal Raman, and UV-excited near-resonant Raman (UVRR) spectra of 1,1'-binaphthyl-2,2'-diamine (BINAM) were measured and analyzed. Density functional theory calculations were carried out to investigate its vibrational frequencies, infrared absorption, normal Raman, and near-resonance Raman intensities. The observed Raman and IR bands of BINAM were assigned with respect to the local vibrations of substituted 2-naphthylamine. Several Raman bands of BINAM were found selectively enhanced in the UVRR in comparison with the normal Raman spectrum. Possible excited state geometry distortion was discussed based on the resonance Raman intensity analysis.
文摘A perturbation theory model that describes splitting of the spectra in highly symmetrical molecular species in electrostatic field is proposed. An anahrmonie model of a two-dimensional oscillator having Kratzer potential energy function is used to model the molecular species and to represent the unperturbed system. A selection rule for the radial quantum number of the oscillator is derived. The eigenfunctions of a two-dimensional anharmonic oscillator in cylindrical coordinates are used for the matrix elements representing the probability for energy transitions in dipole approximation to be calculated. Several forms of perturbation operators are proposed to model the interaction between the polyatomic molecular species and an electrostatic field. It is found that the degeneracy is removed in the presence of the electric field and spectral splitting occurs. Anharmonic approximation for the unperturbed system is more accurate and reliable representation of a reaJ polyatomic molecular species.
基金The project support by National Natural Science Foundation of China under Grant No. 10776022 Acknowledgment The authors would like to thank Prof. J.D. Gale for his providing us GULP code.
文摘Shell model molecular dynamic simulation with interatomic pair potential is utilized to investigate the elastic and thermodynamic properties of gallium nitride with hexagonal wurtzite structure (w-GaN) at high pressure. The calculated elastic constants Cij at zero pressure and 300 K agree well with the experimental data and other calculated values. Meanwhile, the dependences of the relative volume V/Vo, elastic constants Cij, entropy S, enthalpy H, and heat capacities Cv and Up on pressure are successfully obtained. From the elastic constants obtained, we also calculate the shear modulus G, bulk modulus B, Young's modulus E, Poisson's ratio v, Debye temperature ΘD, and shear anisotropic factor Ashear on pressures.
基金supported by Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(No.2021ZR109)the National Natural Science Foundation of China(No.22173104)。
文摘In this work,we review recent progress on the view of potential energy surfaces and molecular dynamics study of water and its related reactions in the last decade or so.Some important gas-phase reactions of water with radicals,chemisorbed dissociative dynamics of water on solid surfaces,and statistical mechanics and vibrational spectrum simulations of water from clusters to the condensed phase have been introduced.The recently developed machine learning techniques,such as the neural networks in a combination of permutational invariant polynomials or fundamental invariants,the atomic neural networks framework,the gaussian approximation potentials with the smooth overlap of atomic position kernel,as well as the many-body expansion framework for the construction of highly accurate potential energy surfaces,have also been discussed.Finally,some suggestions have been provided for further improvement of the potential energy surfaces and dynamics methods of water-related systems.
基金Supported by the National Natural Science Foundation of China(No.29576250).
文摘A comprehensive study on various internal energies for the dipolar hard sphere fluids, including Stockmayer fluids, the mixtures of Lennard-Jones and Stockmayer and Stockmayer fluids and the electrolyte solutions is reported based on the perturbation theory and mean spherical approximation. Compared with the results of molecular simulations, it is shown that the perturbation theory is better than the mean spherical approximation.
基金supported by the National Natural Science Foundation of China(No.21973015 and No.22125301)。
文摘Carbon capture and storage technology have been rapidly developed to reduce the carbon dioxide(CO2)emission into the environment.It has been found that the amine-based organic molecules could absorb CO_(2) efficiently and form the bicarbonate salts through hydrogen-bond(H-bond)interactions.Recently,the aqueous 1,3-diphenylguanidine(DPG)solution was developed to trap and convert CO_(2) to valuable chemicals under ambient conditions.However,how the DPG molecules interact with CO_(2) in an aqueous solution remains unclear.In this work,we perform molecular dynamics simulations to explore the atomistic details of CO_(2) in the aqueous DPG.The simulated results reveal that the protonated DPGH+and the bicarbonate anions prefer to form complexes through different H-bond patterns.These double H-bonds are quite stable in thermodynamics,as indicated from the accurate density functional theory calculations.This study is helpful to understand the catalytic mechanism of CO_(2) conversion in the aqueous DPG.
基金supported by the German Research Foundation (DFG) through contract GR 1503/38-1。
文摘Density functional theory calculations together with ab initio molecular dynamics(AIMD)simulations have been used to study the solvation,diffusion and transformation of Li^(+)and LiO_(2)upon O_(2)reduction in three organic electrolytes.These processes are critical for the performance of Li-air batteries.Apart from studying the structure of the solvation shells in detail,AIMD simulations have been used to derive the diffusivity and together with the Blue Moon ensemble approach to explore LiO_(2)formation from Li^(+)and O_(2)−and the subsequent disproportionation of 2LiO_(2)into Li_(2)O_(2)+O_(2).By comparing the results of the simulations to gas phase calculations,the impact of electrolytes on these reactions is assessed which turns out to be more pronounced for the ionic species involved in these reactions.
文摘Ashcroft's local empty core (EMC) model pseudopotential in the second-order perturbation theory is used to study the electron dispersion relation, the Fermi energy, and deviation in the Fermi energy from free electron value for the liquid alkali metals and their equiatomic binary alloys for the first time. In the present computation, the use of pseudo-alloy-atom model (PAA) is proposed and found successful. The influence of the six different forms of the local field correction functions proposed by Hartree (H), Vashishta Singwi (VS), Taylor (T), lehimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) on the aforesaid electronic properties is examined explicitly, which reflects the varying effects of screening. The depth of the negative hump in the electron dispersion of liquid alkalis decreases in the order Li --→ K, except for Rb and Cs, it increases. The results of alloys are in predictive nature.
文摘Intrinsic viscosity is one of the most fundamental properties of dilute polymer solutions; its study forms an integral part of the cornerstone of the modern macromolecular theory. However, a general theory applicable to any chain architectures and solvent conditions has remained elusive, due to the formidable challenges in the theoretical treatment of the long-range, many-body and accumulative hydrodynamic effects. Recently, Lijia An and coworkers at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, has developed a new approach that largely overcomes these challenges. Their new theory provides a simple and unified theoretical framework for describing the intrinsic viscosity of polymers with arbitrary architectures under any solvent conditions and forms the theoretical basis for inferring the polymer chain structure from intrinsic viscosity measurements. Comparisons with existing experimental data yield extensive, quantitative agreement.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1262103,11302218 and 11172289)Anhui Provincial Natural Science Foundation(Grant Nos.1308085QA10 and 1408085J08)the Fundamental Research Funds for the Central Universities of China
文摘A theoretical model extended from the Frenkel-Eyring molecular kinetic theory(MKT)was applied to describe the boundary slip on textured surfaces.The concept of the equivalent depth of potential well was adopted to characterize the solid-liquid interactions on the textured surfaces.The slip behaviors on both chemically and topographically textured surfaces were investigated using molecular dynamics(MD)simulations.The extended MKT slip model is validated by our MD simulations under various situations,by constructing different complex surfaces and varying the surface wettability as well as the shear stress exerted on the liquid.This slip model can provide more comprehensive understanding of the liquid flow on atomic scale by considering the influence of the solid-liquid interactions and the applied shear stress on the nano-flow.Moreover,the slip velocity shear-rate dependence can be predicted using this slip model,since the nonlinear increase of the slip velocity under high shear stress can be approximated by a hyperbolic sine function.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11072108)the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 201028)+1 种基金Program for New Century Excellent Talents in University (Grant No. NCET-11-0832)the Foundation of Nanjing University Aeronautics and Astronautics
文摘Thermal vibration of single-layered graphene sheets (SLGSs) is investigated using plate model together with the law of equi-partition of energy and the molecular dynamics (MD) method based on the condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force field.The in-plane stiffness and Poisson ratio of SLGSs are calculated by stretching SLGSs.The effective thickness of SLGSs is obtained by the MD simulations for the thermal vibration of SLGSs through the natural frequency.The root-mean-squared (RMS) amplitudes for SLGSs of differing temperatures and boundary conditions are calculated by the MD,and are compared with the results calculated by the thin plate model together with the law of equi-partition of energy.At the center of SLGSs,the thin plate theory can predict the MD results reasonably well.For the difference of bonding structure of the edge atoms,the deviation between the MD results and plate theory becomes more readily apparent near the edges of SLGSs.