Soil organic carbon(SOC) is a major component of the global carbon cycle and has a potentially large impact on the greenhouse effect. Paddy soils are important agricultural soils worldwide, especially in Asia. Thus, a...Soil organic carbon(SOC) is a major component of the global carbon cycle and has a potentially large impact on the greenhouse effect. Paddy soils are important agricultural soils worldwide, especially in Asia. Thus, a better understanding of the relationship between SOC of paddy soils and climate variables is crucial to a robust understanding of the potential effect of climate change on the global carbon cycle. A soil profile data set(n = 1490) from the Second National Soil Survey of China conducted from 1979 to 1994 was used to explore the relationships of SOC density with mean annual temperature(MAT) and mean annual precipitation(MAP) in six soil regions and eight paddy soil subgroups. Results showed that SOC density of paddy soils was negatively correlated with MAT and positively correlated with MAP(P < 0.01). The relationships of SOC density with MAT and MAP were weak and varied among the six soil regions and eight paddy soil subgroups. A preliminary assessment of the response of SOC in Chinese paddy soils to climate indicated that climate could lead to a 13% SOC loss from paddy soils. Compared to other soil regions, paddy soils in Northern China will potentially more sensitive to climate change over the next several decades. Paddy soils in Middle and Lower Yangtze River Basin could be a potential carbon sink. Reducing the climate impact on paddy soil SOC will mitigate the positive feedback loop between SOC release and global climate change.展开更多
Southern rice black-streaked dwarf virus (SRBSDV) is a novel Fijivirus prevalent in rice in southern and central China,and northern Vietnam. Its genome has 10 segments of double-stranded RNA named S1 to S10 according ...Southern rice black-streaked dwarf virus (SRBSDV) is a novel Fijivirus prevalent in rice in southern and central China,and northern Vietnam. Its genome has 10 segments of double-stranded RNA named S1 to S10 according to their size. An isolate of SRBSDV,JNi4,was obtained from naturally infected maize plants from Ji'ning,Shandong province,in the 2008 maize season. Segments S7 to S10 of JNi4 share nucleotide identities of 72.6%-73.1%,72.3%-73%,73.9%-74.5% and 77.3%-79%,respectively,with corresponding segments of Rice black-streaked dwarf virus isolates,and identities of 99.7%,99.1%-99.7%,98.9%-99.5%,and 98.6%-99.2% with those of SRBSDV isolates HN and GD. JNi4 forms a separate branch with GD and HN in the phylogenetic trees constructed with genomic sequences of S7 to S10. These results confirm the proposed taxonomic status of SRBSDV as a distinct species of the genus Fijivirus and indicate that JNi4 is an isolate of SRBSDV. Shandong is so far the northernmost region where SRBSDV is found in China.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41301242,41201213)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA05050509)
文摘Soil organic carbon(SOC) is a major component of the global carbon cycle and has a potentially large impact on the greenhouse effect. Paddy soils are important agricultural soils worldwide, especially in Asia. Thus, a better understanding of the relationship between SOC of paddy soils and climate variables is crucial to a robust understanding of the potential effect of climate change on the global carbon cycle. A soil profile data set(n = 1490) from the Second National Soil Survey of China conducted from 1979 to 1994 was used to explore the relationships of SOC density with mean annual temperature(MAT) and mean annual precipitation(MAP) in six soil regions and eight paddy soil subgroups. Results showed that SOC density of paddy soils was negatively correlated with MAT and positively correlated with MAP(P < 0.01). The relationships of SOC density with MAT and MAP were weak and varied among the six soil regions and eight paddy soil subgroups. A preliminary assessment of the response of SOC in Chinese paddy soils to climate indicated that climate could lead to a 13% SOC loss from paddy soils. Compared to other soil regions, paddy soils in Northern China will potentially more sensitive to climate change over the next several decades. Paddy soils in Middle and Lower Yangtze River Basin could be a potential carbon sink. Reducing the climate impact on paddy soil SOC will mitigate the positive feedback loop between SOC release and global climate change.
基金National Natural Science Foundation of China (30971895, 31011130031)Special Research Funds for the Doctoral Program of Higher Education (20080434006)+2 种基金Grants from Ministry of Science and Technology (2009ZX08003-014B)Shandong province(2009GG10009021)Modern maize industrial system of Shandong province
文摘Southern rice black-streaked dwarf virus (SRBSDV) is a novel Fijivirus prevalent in rice in southern and central China,and northern Vietnam. Its genome has 10 segments of double-stranded RNA named S1 to S10 according to their size. An isolate of SRBSDV,JNi4,was obtained from naturally infected maize plants from Ji'ning,Shandong province,in the 2008 maize season. Segments S7 to S10 of JNi4 share nucleotide identities of 72.6%-73.1%,72.3%-73%,73.9%-74.5% and 77.3%-79%,respectively,with corresponding segments of Rice black-streaked dwarf virus isolates,and identities of 99.7%,99.1%-99.7%,98.9%-99.5%,and 98.6%-99.2% with those of SRBSDV isolates HN and GD. JNi4 forms a separate branch with GD and HN in the phylogenetic trees constructed with genomic sequences of S7 to S10. These results confirm the proposed taxonomic status of SRBSDV as a distinct species of the genus Fijivirus and indicate that JNi4 is an isolate of SRBSDV. Shandong is so far the northernmost region where SRBSDV is found in China.