The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal a...The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In_(2)Se_(3).During the polariza-tion switching process,the difference in surface electrostatic potential leads to a redistribution of electronic states.This affects the interaction strength between the adsorbed small molecules and the catalyst substrate,thereby altering the reaction barrier.In addition,the surface states must be considered to prevent the adsorption of other small molecules(such as *O,*OH,and *H).Further-more,the V@↓-In_(2)Se_(3) possesses excellent catalytic properties,high electrochemical and thermody-namic stability,which facilitates the catalytic process.Machine learning also helps us further ex-plore the underlying mechanisms.The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes.展开更多
A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexi...A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexistence theory and verified in four kinds of binary aqueous solutions and two kinds of ternary aqueous solutions. The calculated mass action concentrations of structural units or ion couples in four binary aqueous solutions and two ternary solutions at 298.15 K have good agreement with the reported activity data from literatures after shifting the standard state and concentration unit. Therefore, the calculated mass action concentrations of structural units or ion couples from the developed universal thermodynamic model for ternary and binary aqueous solutions can be applied to predict reaction ability of components in ternary and binary strong electrolyte aqueous solutions. It is also proved that the assumptions applied in the developed thermodynamic model are correct and reasonable, i.e., strong electrolyte aqueous solution is composed of cations and anions as simple ions, H2O as simple molecule and other hydrous salt compounds as complex molecules. The calculated mass action concentrations of structural units or ion couples in ternary and binary strong electrolyte aqueous solutions strictly follow the mass action law.展开更多
Based on the orthodox theory,a model of a single electron transistor (SET) of metallic tunneling junctions is built using the master equation method. Several parameters of the device, such as capacitance, resistance...Based on the orthodox theory,a model of a single electron transistor (SET) of metallic tunneling junctions is built using the master equation method. Several parameters of the device, such as capacitance, resistance and temperature,are input into the model and thus the I-V curves are attained. These curves are consistent with those from other experiments; therefore, the model is verified. However, there still exists a difference between simulated results and experimental results,mainly comes from the stationary case of the master equation. In other words, precision of simulated results would be increased if the transient case of the master equation is considered. Moreover, the current increases exponentially at higher drain voltages, which is due to the fact that the barrier suppression is caused by the image charge potential.展开更多
Based on density functional theory calculations,the full hydrolysis of per NH3BH3 molecule to produce three hydrogen molecules on single Pt atoms supported on oxidized graphene(Pt1/Gr-O)is investigated.It is suggested...Based on density functional theory calculations,the full hydrolysis of per NH3BH3 molecule to produce three hydrogen molecules on single Pt atoms supported on oxidized graphene(Pt1/Gr-O)is investigated.It is suggested that the first hydrogen molecule is produced by the combination of two hydrogen atoms from two successive B-H bonds breaking.Then one H2O molecule attacks the left*BHNH3 group(*represents adsorbed state)to form*BH(H2O)NH3 and the elongated O-H bond is easily broken to produce*BH(OH)NH3.The second H2O molecule attacks*BH(OH)NH3 to form*BH(OH)(H2O)NH3 and the breaking of O-H bond pointing to the plane of Pt1/Gr-O results in the desorption of BH(OH)2NH3.The second hydrogen molecule is produced from two hydrogen atoms coming from two H2O molecules and Pt1/Gr-O is recovered after the releasing of hydrogen molecule.The third hydrogen molecule is generated by the further hydrolysis of BH(OH)2NH3 in water solution.The rate-limiting step of the whole process is the combination of one H2O molecule and*BHNH3 with an energy barrier of 16.1 kcal/mol.Thus,Pt1/Gr-O is suggested to be a promising catalyst for hydrolysis of NH3BH3 at room temperature.展开更多
Single-atom catalysts have been applied in many processes recently.The difference of their kinetic behavior compared to the traditional heterogeneous catalysts has not been extensively discussed yet.Herein a complete ...Single-atom catalysts have been applied in many processes recently.The difference of their kinetic behavior compared to the traditional heterogeneous catalysts has not been extensively discussed yet.Herein a complete catalytic cycle of CH4 combustion assuming to be confined at isolated single sites of the Co3O4(110)surface is computationally compared with that on multi sites.The macroscopic kinetic behaviors of CH4 combustion on Co3O4(110)is systematically and quantitatively compared between those on the single site and multi sites utilizing kinetic Monte Carlo simulations upon the energetic information from the PBE+U calculation and statistic mechanics.The key factors governing the kinetics of CH4 combustion are disclosed for both the catalytic cycles respectively following the single-site and multi-site mechanisms.It is found that cooperation of multi active sites can promote the activity of complete CH4 combustions substantially in comparison to separated single-site catalyst whereas the confinement of active sites could regulate the selectivity of CH4 oxidation.The quantitative understanding of catalytic mechanism paves the way to improve the activity and selectivity for CH4 oxidation.展开更多
A scheme of teleportation of a tripartite state via W state is suggested. The W state serves as quantum channels. Standard Bell-state measurements and Von Neumann measurements are performed. After the sender operates ...A scheme of teleportation of a tripartite state via W state is suggested. The W state serves as quantum channels. Standard Bell-state measurements and Von Neumann measurements are performed. After the sender operates the measurements and informs the receiver her results, he can reconstruct the original state by the corresponding unitary transformation. The probability of the successful teleportation is also obtained.展开更多
Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole en...Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole entropy calculation through original brick-wall model is overcome. The result of the direct proportion between black hole entropy and its event horizon area is drawn and given. The result shows that the black hole entropy must be the entropy of quantum state near the event horizon.展开更多
Owing to the atomic dispersion of active sites via electronic interaction with supports,single-atom catalysts(SACs)grant maximum utilization of metals with unique activity and/or selectivity in various catalytic proce...Owing to the atomic dispersion of active sites via electronic interaction with supports,single-atom catalysts(SACs)grant maximum utilization of metals with unique activity and/or selectivity in various catalytic processes.However,the stability of single atoms under oxygen-poor conditions,and the mechanism of hydrogen activation on SACs remain elusive.Here,through a combination of theoretical calculation and experiments,the stabilization of metal single atoms on tungsten oxide and its catalytic properties in H2 activation are investigated.Our calculation results indicate that the oxygen defects on the WO3(001)surface play a vital role in the stabilization of single metal atoms through electron transfer from the oxygen vacancies to the metal atoms.In comparison with Pd and Au,Pt single atoms possess greatly enhanced stability on the WOx(001)surface and carry negative charge,facilitating the dissociation of H-2 to metal-H species(Hδ-)via homolytic cleavage of H2 similar to that occurring in metal ensembles.More importantly,the facile diffusion of Pt-H to the WOx support results in the formation of Bronsted acid sites(Hδ+),imparting bifunctionality to Pt1/WOx.The dynamic formation of Br?nsted acid sites in hydrogen atmosphere proved to be the key to chemoselective hydrogenolysis of glycerol into 1,3-propanediol,which was experimentally demonstrated on the Pt1/WOx catalyst.展开更多
MXenes have attracted considerable attention owing to their versatile and excellent physicochemi‐cal properties.Especially,they have potential applications as robust support for single atom cata‐lysts.Here,quantum c...MXenes have attracted considerable attention owing to their versatile and excellent physicochemi‐cal properties.Especially,they have potential applications as robust support for single atom cata‐lysts.Here,quantum chemical studies with density functional theory are carried out to systemati‐cally investigate the geometries,stability,electronic properties of oxygen functionalized Ti_(2)C(Ti_(2)CO_(2))supported single‐atom catalysts M_(1)/Ti_(2)CO_(2)(M=Fe,Co,Ni,Cu Ru,Rh,Pd,Ag Os,Ir,Pt,Au).A new non‐noble metal SAC Fe_(1)/Ti_(2)CO_(2) has been found to show excellent catalytic performance for low‐temperature CO oxidation after screening the group 8‐11 transition metals.We find that O_(2) and CO adsorption on Fe_(1) atom of Fe_(1)/Ti_(2)CO_(2) is favorable.Accordingly,five possible mechanisms for CO oxidation on this catalyst are evaluated,including Eley‐Rideal,Langmuir‐Hinshelwood,Mars-van Krevelen,Termolecular Eley‐Rideal,and Termolecular Langmuir‐Hinshelwood(TLH)mechanisms.Based on the calculated reaction energies for different pathways,Fe_(1)/Ti_(2)CO_(2) shows excellent kinet‐ics for CO oxidation via TLH mechanism,with distinct low‐energy barrier(0.20 eV)for the rate‐determining step.These results demonstrate that Fe_(1)/Ti_(2)CO_(2) MXene is highly promising 2D materials for building robust non‐noble metal catalysts.展开更多
The electronic metal-support interaction(EMSI)is one of most intriguing phenomena in heterogeneous catalysis.In this work,this subtle effect is clearly demonstrated by density functional theory(DFT)calculations of sin...The electronic metal-support interaction(EMSI)is one of most intriguing phenomena in heterogeneous catalysis.In this work,this subtle effect is clearly demonstrated by density functional theory(DFT)calculations of single Pt atom supported on vacancies in a boron nitride nanosheet.Moreover,the relation between the EMSI and the performance of Pt in propane direct dehydrogenation(PDH)is investigated in detail.The charge state and partial density of states of single Pt atom show distinct features at different anchoring positions,such as boron and nitrogen vacancies(Bvac and Nvac,respectively).Single Pt atom become positively and negatively charged on Bvac and Nvac,respectively.Therefore,the electronic structure of Pt can be adjusted by rational deposition on the support.Moreover,Pt atoms in different charge states have been shown to have different catalytic abilities in PDH.The DFT calculations reveal that Pt atoms on Bvac(Pt-Bvac)have much higher reactivity towards reactant/product adsorption and C–H bond activation than Pt supported on Nvac(Pt-Nvac),with larger adsorption energy and lower barrier along the reaction pathway.However,the high reactivity of Pt-Bvac also hinders propene desorption,which could lead to unwanted deep dehydrogenation.Therefore,the results obtained herein suggest that a balanced reactivity for C–H activation in propane and propene desorption is required to achieve optimum yields.Based on this descriptor,a single Pt atom on a nitrogen vacancy is considered an effective catalyst for PDH.Furthermore,the deep dehydrogenation of the formed propene is significantly suppressed,owing to the large barrier on Pt-Nvac.The current work demonstrates that the catalytic properties of supported single Pt atoms can be tuned by rationally depositing them on a boron nitride nanosheet and highlights the great potential of single-atom catalysis in the PDH reaction.展开更多
The SU(1,1) coherent states for a relativistic model of the linear singular oscillator are considered. The corresponding partition function is evaluated. The path integral for the transition amplitude between SU(1,...The SU(1,1) coherent states for a relativistic model of the linear singular oscillator are considered. The corresponding partition function is evaluated. The path integral for the transition amplitude between SU(1,1) coherent states is given. Classical equations of the motion in the generalized curved phase space are obtained. It is shown that the use of quasiclassical Bohr Sommerfeld quantization rule yields the exact expression for the energy spectrum.展开更多
The expression of acceleration in the external gravitational field of neutron star with electric and magnetic charge and magnetic moment is obtained. And some gravitational effects and properties of the field are disc...The expression of acceleration in the external gravitational field of neutron star with electric and magnetic charge and magnetic moment is obtained. And some gravitational effects and properties of the field are discussed respectively from the contributions of the electric and magnetic charge and magnetic moment on the acceleration.展开更多
A photoionization cross section calculation ofMn^+ is performed in the formalism of many-body perturbation theory for photon energies ranging from 48 eV to 56 eV. We consider excitations from the 3p, 3d, and 4s subsh...A photoionization cross section calculation ofMn^+ is performed in the formalism of many-body perturbation theory for photon energies ranging from 48 eV to 56 eV. We consider excitations from the 3p, 3d, and 4s subshells. The effects of the strong 3p→ 3d and 3p→ 4s transitions are included as resonant contributions to the total cross sections. Good agreement with experiment is found.展开更多
Based on the C-mapping topological current theory and the decomposition of gauge potential theory, we investigate knotted vortex lines and monopoles in Skyrme theory and simply discuss the branch processes (splitting...Based on the C-mapping topological current theory and the decomposition of gauge potential theory, we investigate knotted vortex lines and monopoles in Skyrme theory and simply discuss the branch processes (splitting, merging, and intersection) during the evolution of the monopoles.展开更多
This article discusses the separability of the pure states and mixed states of the quantum network of two nodes by means of the criterion of no entanglement in terms of the covariance correlation tensor in quantum net...This article discusses the separability of the pure states and mixed states of the quantum network of two nodes by means of the criterion of no entanglement in terms of the covariance correlation tensor in quantum network theory, i.e. for a composite system consisting of two nodes. The covariance correlation tensor is equal to zero for all possible and .展开更多
The dynamic adsorption of possible intermediates on single-atom catalysts(SACs)under working condition plays a key role in the electrocatalytic performance by the oxygen evolution reaction(OER),and therefore the perfo...The dynamic adsorption of possible intermediates on single-atom catalysts(SACs)under working condition plays a key role in the electrocatalytic performance by the oxygen evolution reaction(OER),and therefore the performance of the dynamic adsorption should be fully considered in the theoretical screening of potential SACs.Based on density functional theory calculations,the OER performance of 27 types of C_(2)N-supported single transition metal atoms(TM@C_(2)N)is systematically investigated without and with considering the dynamic adsorption of possible intermediates.Without considering dynamic adsorption,only Rh@C_(2)N and Ni@C_(2)N are screened out as good catalysts.However,by further considering the dynamic adsorption configurations of possible intermediates,more promising TM@C_(2)N SACs including Fe(Co,Ni,Ru,Rh,Ir)@C_(2)N toward the OER are screened out.The presence of the intermediates(*HO,*O)on SACs could shift their d band center toward lower energy level,which makes the interaction between the adsorbate and SACs moderate and thus enhances their OER performance.The present work is instructive for further screening and designing of efficient single-atom catalysts for the oxygen evolution reaction.展开更多
Developing highly active alloy catalysts that surpass the performance of platinum group metals in the oxygen reduction reaction(ORR)is critical in electrocatalysis.Gold-based single-atom alloy(AuSAA)clusters are gaini...Developing highly active alloy catalysts that surpass the performance of platinum group metals in the oxygen reduction reaction(ORR)is critical in electrocatalysis.Gold-based single-atom alloy(AuSAA)clusters are gaining recognition as promising alternatives due to their potential for high activity.However,enhancing its activity of AuSAA clusters remains challenging due to limited insights into its actual active site in alkaline environments.Herein,we studied a variety of Au_(54)M_(1) SAA cluster catalysts and revealed the operando formed MO_(x)(OH)_(y) complex acts as the crucial active site for catalyzing the ORR under the basic solution condition.The observed volcano plot indicates that Au_(54)Co_(1),Au_(54)M_(1),and Au_(54)Ru_(1) clusters can be the optimal Au_(54)M_(1) SAA cluster catalysts for the ORR.Our findings offer new insights into the actual active sites of AuSAA cluster catalysts,which will inform rational catalyst design in experimental settings.展开更多
CO_(2) electrochemical reduction(CO_(2)ER)to high-value fuels and chemicals is a promising strategy for using CO_(2) as a carbon source.However,the large-scale application of CO_(2)ER is limited by the lack of efficie...CO_(2) electrochemical reduction(CO_(2)ER)to high-value fuels and chemicals is a promising strategy for using CO_(2) as a carbon source.However,the large-scale application of CO_(2)ER is limited by the lack of efficient and selective electrocatalysts.By means of density functional theory(DFT)calculations,the potential of transitional metal-based covalent organic frameworks(TM-COFs,TM=Fe,Co,Ni,Cu,Zn,Ru,Rh,Pd,and Ag)as CO_(2) reduction electrocatalysts was systematically studied.The results show that the single TM atom can be firmly anchored on COFs for forming stable single-atom catalysts.The TM atom in phthalocyanine has excellent catalytic activity towards CO_(2)ER,while the pyridine N in pyrazine is the active site of the hydrogen evolution reaction(HER).Among studied candidates,Co-COF and Rh-COF are predicted to have limiting potential of-0.66/-0.11 and-0.49/-0.49 V for CO_(2)ER/HER,respectively.The present study may provide a new strategy for designing novel bifunctional catalysts.展开更多
文摘The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In_(2)Se_(3).During the polariza-tion switching process,the difference in surface electrostatic potential leads to a redistribution of electronic states.This affects the interaction strength between the adsorbed small molecules and the catalyst substrate,thereby altering the reaction barrier.In addition,the surface states must be considered to prevent the adsorption of other small molecules(such as *O,*OH,and *H).Further-more,the V@↓-In_(2)Se_(3) possesses excellent catalytic properties,high electrochemical and thermody-namic stability,which facilitates the catalytic process.Machine learning also helps us further ex-plore the underlying mechanisms.The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes.
基金Project supported by Publication Foundation of National Science and Technology Academic Books of China
文摘A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexistence theory and verified in four kinds of binary aqueous solutions and two kinds of ternary aqueous solutions. The calculated mass action concentrations of structural units or ion couples in four binary aqueous solutions and two ternary solutions at 298.15 K have good agreement with the reported activity data from literatures after shifting the standard state and concentration unit. Therefore, the calculated mass action concentrations of structural units or ion couples from the developed universal thermodynamic model for ternary and binary aqueous solutions can be applied to predict reaction ability of components in ternary and binary strong electrolyte aqueous solutions. It is also proved that the assumptions applied in the developed thermodynamic model are correct and reasonable, i.e., strong electrolyte aqueous solution is composed of cations and anions as simple ions, H2O as simple molecule and other hydrous salt compounds as complex molecules. The calculated mass action concentrations of structural units or ion couples in ternary and binary strong electrolyte aqueous solutions strictly follow the mass action law.
文摘Based on the orthodox theory,a model of a single electron transistor (SET) of metallic tunneling junctions is built using the master equation method. Several parameters of the device, such as capacitance, resistance and temperature,are input into the model and thus the I-V curves are attained. These curves are consistent with those from other experiments; therefore, the model is verified. However, there still exists a difference between simulated results and experimental results,mainly comes from the stationary case of the master equation. In other words, precision of simulated results would be increased if the transient case of the master equation is considered. Moreover, the current increases exponentially at higher drain voltages, which is due to the fact that the barrier suppression is caused by the image charge potential.
基金supported by the National Natural Science Foundation of China (No.21473167 and No.21688102)the National Key Research and Development Program of China (No.2016YFA0200604)+1 种基金the Fundamental Research Funds for the Central Universities (WK3430000005,WK2340000065)the China Scholarship Council (CSC) (No.201706345015)
文摘Based on density functional theory calculations,the full hydrolysis of per NH3BH3 molecule to produce three hydrogen molecules on single Pt atoms supported on oxidized graphene(Pt1/Gr-O)is investigated.It is suggested that the first hydrogen molecule is produced by the combination of two hydrogen atoms from two successive B-H bonds breaking.Then one H2O molecule attacks the left*BHNH3 group(*represents adsorbed state)to form*BH(H2O)NH3 and the elongated O-H bond is easily broken to produce*BH(OH)NH3.The second H2O molecule attacks*BH(OH)NH3 to form*BH(OH)(H2O)NH3 and the breaking of O-H bond pointing to the plane of Pt1/Gr-O results in the desorption of BH(OH)2NH3.The second hydrogen molecule is produced from two hydrogen atoms coming from two H2O molecules and Pt1/Gr-O is recovered after the releasing of hydrogen molecule.The third hydrogen molecule is generated by the further hydrolysis of BH(OH)2NH3 in water solution.The rate-limiting step of the whole process is the combination of one H2O molecule and*BHNH3 with an energy barrier of 16.1 kcal/mol.Thus,Pt1/Gr-O is suggested to be a promising catalyst for hydrolysis of NH3BH3 at room temperature.
文摘Single-atom catalysts have been applied in many processes recently.The difference of their kinetic behavior compared to the traditional heterogeneous catalysts has not been extensively discussed yet.Herein a complete catalytic cycle of CH4 combustion assuming to be confined at isolated single sites of the Co3O4(110)surface is computationally compared with that on multi sites.The macroscopic kinetic behaviors of CH4 combustion on Co3O4(110)is systematically and quantitatively compared between those on the single site and multi sites utilizing kinetic Monte Carlo simulations upon the energetic information from the PBE+U calculation and statistic mechanics.The key factors governing the kinetics of CH4 combustion are disclosed for both the catalytic cycles respectively following the single-site and multi-site mechanisms.It is found that cooperation of multi active sites can promote the activity of complete CH4 combustions substantially in comparison to separated single-site catalyst whereas the confinement of active sites could regulate the selectivity of CH4 oxidation.The quantitative understanding of catalytic mechanism paves the way to improve the activity and selectivity for CH4 oxidation.
文摘A scheme of teleportation of a tripartite state via W state is suggested. The W state serves as quantum channels. Standard Bell-state measurements and Von Neumann measurements are performed. After the sender operates the measurements and informs the receiver her results, he can reconstruct the original state by the corresponding unitary transformation. The probability of the successful teleportation is also obtained.
基金Youth Scientific Foundation of Sichuan Education Department,国家自然科学基金
文摘Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole entropy calculation through original brick-wall model is overcome. The result of the direct proportion between black hole entropy and its event horizon area is drawn and given. The result shows that the black hole entropy must be the entropy of quantum state near the event horizon.
基金supported by the National Key R&D Program of China(2018YFB1501602 and 2016YFA0202801)the National Natural Science Foundation of China(21690080,21690084,21673228,21721004,21776269,and 21606227)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB17020100)Dalian National Laboratory for Clean Energy(DNL180303)~~
文摘Owing to the atomic dispersion of active sites via electronic interaction with supports,single-atom catalysts(SACs)grant maximum utilization of metals with unique activity and/or selectivity in various catalytic processes.However,the stability of single atoms under oxygen-poor conditions,and the mechanism of hydrogen activation on SACs remain elusive.Here,through a combination of theoretical calculation and experiments,the stabilization of metal single atoms on tungsten oxide and its catalytic properties in H2 activation are investigated.Our calculation results indicate that the oxygen defects on the WO3(001)surface play a vital role in the stabilization of single metal atoms through electron transfer from the oxygen vacancies to the metal atoms.In comparison with Pd and Au,Pt single atoms possess greatly enhanced stability on the WOx(001)surface and carry negative charge,facilitating the dissociation of H-2 to metal-H species(Hδ-)via homolytic cleavage of H2 similar to that occurring in metal ensembles.More importantly,the facile diffusion of Pt-H to the WOx support results in the formation of Bronsted acid sites(Hδ+),imparting bifunctionality to Pt1/WOx.The dynamic formation of Br?nsted acid sites in hydrogen atmosphere proved to be the key to chemoselective hydrogenolysis of glycerol into 1,3-propanediol,which was experimentally demonstrated on the Pt1/WOx catalyst.
文摘MXenes have attracted considerable attention owing to their versatile and excellent physicochemi‐cal properties.Especially,they have potential applications as robust support for single atom cata‐lysts.Here,quantum chemical studies with density functional theory are carried out to systemati‐cally investigate the geometries,stability,electronic properties of oxygen functionalized Ti_(2)C(Ti_(2)CO_(2))supported single‐atom catalysts M_(1)/Ti_(2)CO_(2)(M=Fe,Co,Ni,Cu Ru,Rh,Pd,Ag Os,Ir,Pt,Au).A new non‐noble metal SAC Fe_(1)/Ti_(2)CO_(2) has been found to show excellent catalytic performance for low‐temperature CO oxidation after screening the group 8‐11 transition metals.We find that O_(2) and CO adsorption on Fe_(1) atom of Fe_(1)/Ti_(2)CO_(2) is favorable.Accordingly,five possible mechanisms for CO oxidation on this catalyst are evaluated,including Eley‐Rideal,Langmuir‐Hinshelwood,Mars-van Krevelen,Termolecular Eley‐Rideal,and Termolecular Langmuir‐Hinshelwood(TLH)mechanisms.Based on the calculated reaction energies for different pathways,Fe_(1)/Ti_(2)CO_(2) shows excellent kinet‐ics for CO oxidation via TLH mechanism,with distinct low‐energy barrier(0.20 eV)for the rate‐determining step.These results demonstrate that Fe_(1)/Ti_(2)CO_(2) MXene is highly promising 2D materials for building robust non‐noble metal catalysts.
基金supported by the National Science Foundation of China(91545117)the Natural Science Foundation of Liaoning Province(201602676)+1 种基金the Fundamental Research Funds for Colleges and Universities in Liaoning Province(LQN201703)the Startup Foundation for Doctors of Shenyang Normal University(BS201620)~~
文摘The electronic metal-support interaction(EMSI)is one of most intriguing phenomena in heterogeneous catalysis.In this work,this subtle effect is clearly demonstrated by density functional theory(DFT)calculations of single Pt atom supported on vacancies in a boron nitride nanosheet.Moreover,the relation between the EMSI and the performance of Pt in propane direct dehydrogenation(PDH)is investigated in detail.The charge state and partial density of states of single Pt atom show distinct features at different anchoring positions,such as boron and nitrogen vacancies(Bvac and Nvac,respectively).Single Pt atom become positively and negatively charged on Bvac and Nvac,respectively.Therefore,the electronic structure of Pt can be adjusted by rational deposition on the support.Moreover,Pt atoms in different charge states have been shown to have different catalytic abilities in PDH.The DFT calculations reveal that Pt atoms on Bvac(Pt-Bvac)have much higher reactivity towards reactant/product adsorption and C–H bond activation than Pt supported on Nvac(Pt-Nvac),with larger adsorption energy and lower barrier along the reaction pathway.However,the high reactivity of Pt-Bvac also hinders propene desorption,which could lead to unwanted deep dehydrogenation.Therefore,the results obtained herein suggest that a balanced reactivity for C–H activation in propane and propene desorption is required to achieve optimum yields.Based on this descriptor,a single Pt atom on a nitrogen vacancy is considered an effective catalyst for PDH.Furthermore,the deep dehydrogenation of the formed propene is significantly suppressed,owing to the large barrier on Pt-Nvac.The current work demonstrates that the catalytic properties of supported single Pt atoms can be tuned by rationally depositing them on a boron nitride nanosheet and highlights the great potential of single-atom catalysis in the PDH reaction.
文摘The SU(1,1) coherent states for a relativistic model of the linear singular oscillator are considered. The corresponding partition function is evaluated. The path integral for the transition amplitude between SU(1,1) coherent states is given. Classical equations of the motion in the generalized curved phase space are obtained. It is shown that the use of quasiclassical Bohr Sommerfeld quantization rule yields the exact expression for the energy spectrum.
文摘The expression of acceleration in the external gravitational field of neutron star with electric and magnetic charge and magnetic moment is obtained. And some gravitational effects and properties of the field are discussed respectively from the contributions of the electric and magnetic charge and magnetic moment on the acceleration.
基金The project supported by the Research Fund for the Doctoral Program of Higher Education under Grant No. 2002610001 and the National Natural Science Foundation of China under Grant No. 60054402
文摘A photoionization cross section calculation ofMn^+ is performed in the formalism of many-body perturbation theory for photon energies ranging from 48 eV to 56 eV. We consider excitations from the 3p, 3d, and 4s subshells. The effects of the strong 3p→ 3d and 3p→ 4s transitions are included as resonant contributions to the total cross sections. Good agreement with experiment is found.
基金The project supported by National Natural Science Foundation of China and under Grant No. 10475034
文摘Based on the C-mapping topological current theory and the decomposition of gauge potential theory, we investigate knotted vortex lines and monopoles in Skyrme theory and simply discuss the branch processes (splitting, merging, and intersection) during the evolution of the monopoles.
文摘This article discusses the separability of the pure states and mixed states of the quantum network of two nodes by means of the criterion of no entanglement in terms of the covariance correlation tensor in quantum network theory, i.e. for a composite system consisting of two nodes. The covariance correlation tensor is equal to zero for all possible and .
基金This work is supported by the National Key Research and Development Program(No.2018YFA0208600)the National Natural Science Foundation of Chi-na(No.U19A2015,No.22102167)+2 种基金CAS Project for Young Scientists in Basic Research(YSBR-051)Wenhua Zhang is supported by USTC Tang Scholarship and State Scholarship Fund(202206345005)The calculations were performed at the Super-computing Center of University of Science and Technology of China(USTCSCC).
文摘The dynamic adsorption of possible intermediates on single-atom catalysts(SACs)under working condition plays a key role in the electrocatalytic performance by the oxygen evolution reaction(OER),and therefore the performance of the dynamic adsorption should be fully considered in the theoretical screening of potential SACs.Based on density functional theory calculations,the OER performance of 27 types of C_(2)N-supported single transition metal atoms(TM@C_(2)N)is systematically investigated without and with considering the dynamic adsorption of possible intermediates.Without considering dynamic adsorption,only Rh@C_(2)N and Ni@C_(2)N are screened out as good catalysts.However,by further considering the dynamic adsorption configurations of possible intermediates,more promising TM@C_(2)N SACs including Fe(Co,Ni,Ru,Rh,Ir)@C_(2)N toward the OER are screened out.The presence of the intermediates(*HO,*O)on SACs could shift their d band center toward lower energy level,which makes the interaction between the adsorbate and SACs moderate and thus enhances their OER performance.The present work is instructive for further screening and designing of efficient single-atom catalysts for the oxygen evolution reaction.
文摘Developing highly active alloy catalysts that surpass the performance of platinum group metals in the oxygen reduction reaction(ORR)is critical in electrocatalysis.Gold-based single-atom alloy(AuSAA)clusters are gaining recognition as promising alternatives due to their potential for high activity.However,enhancing its activity of AuSAA clusters remains challenging due to limited insights into its actual active site in alkaline environments.Herein,we studied a variety of Au_(54)M_(1) SAA cluster catalysts and revealed the operando formed MO_(x)(OH)_(y) complex acts as the crucial active site for catalyzing the ORR under the basic solution condition.The observed volcano plot indicates that Au_(54)Co_(1),Au_(54)M_(1),and Au_(54)Ru_(1) clusters can be the optimal Au_(54)M_(1) SAA cluster catalysts for the ORR.Our findings offer new insights into the actual active sites of AuSAA cluster catalysts,which will inform rational catalyst design in experimental settings.
基金the financial support by the Natural Science Foundation of Science and Technology Department of Jilin Province(20210101131JC)the Education Department of Jilin Province(JJKH20230217KJ).
文摘CO_(2) electrochemical reduction(CO_(2)ER)to high-value fuels and chemicals is a promising strategy for using CO_(2) as a carbon source.However,the large-scale application of CO_(2)ER is limited by the lack of efficient and selective electrocatalysts.By means of density functional theory(DFT)calculations,the potential of transitional metal-based covalent organic frameworks(TM-COFs,TM=Fe,Co,Ni,Cu,Zn,Ru,Rh,Pd,and Ag)as CO_(2) reduction electrocatalysts was systematically studied.The results show that the single TM atom can be firmly anchored on COFs for forming stable single-atom catalysts.The TM atom in phthalocyanine has excellent catalytic activity towards CO_(2)ER,while the pyridine N in pyrazine is the active site of the hydrogen evolution reaction(HER).Among studied candidates,Co-COF and Rh-COF are predicted to have limiting potential of-0.66/-0.11 and-0.49/-0.49 V for CO_(2)ER/HER,respectively.The present study may provide a new strategy for designing novel bifunctional catalysts.