A real time algorithm is presented here to recognize and analyze 8 channel simultaneous electro cardiograph(ECG). The algorithm transforms 8 channel simultaneous ECG into three orthogonal vectors and spatial veloc...A real time algorithm is presented here to recognize and analyze 8 channel simultaneous electro cardiograph(ECG). The algorithm transforms 8 channel simultaneous ECG into three orthogonal vectors and spatial velocity first, then forms the spatial velocity sample, and uses this spatial velocity sample to recognize each beat. The algorithm computes the averaged parameters by using averaged spatial velocity and the averaged ECG and the current parameters by using the current beat period and current width of QRS. The algorithm can recognize P, QRS and T onsets and ends of simultaneous 12 lead ECG precisely, and some arrhythmias such as premature ventricular beat, ventricular escape beat, R on T, bigeminy, trigeminy. The algorithm software works well on a real 8 channel ECG system and meets the demands of designing.展开更多
Common short bolts of equal length are widely used to support the roofs of roadways in coal mines.However, they are insufficient to keep the roof stable against large deformations, so docking long bolts with high leve...Common short bolts of equal length are widely used to support the roofs of roadways in coal mines.However, they are insufficient to keep the roof stable against large deformations, so docking long bolts with high levels of elongation that can adapt to large deformations of the surrounding rock have been adopted. This paper proposes a collaborative support method that uses long and short bolts. In this study,the mechanism of docking long bolts and collaborative support was studied. Numerical simulation, similarity simulation, and field testing were used to analyze the distribution law of the displacement, stress,and plastic failure in the surrounding rock under different support schemes. Compared with the equal-length short bolt support, the collaborative support changed the maximum principal stress of the shallow roof from tensile stress to compressive stress, and the minimum principal stress of the roof significantly increased. The stress concentration degree of the anchorage zone clearly increased. The deformation of the roof and the two sides was greatly reduced, and the subsidence shape of the shallow roof changed from serrated to a smooth curve. The roof integrity was enhanced, and the roof moved down as a whole. Plastic failure significantly decreased, and the plastic zone of the roof was within the anchorage range. The similarity simulation results showed that, under the maximum mining stress,the roof collapsed with the equal-length short bolt support but remained stable with the collaborative support. The collaborative support method was successfully applied in the field and clearly improved the stability of the surrounding rock for a large deformation roadway.展开更多
In order to investigate zonal disintegration mechanism of isotropic rock masses around a deep spherical tunnel, a new mechanical model subjected to dynamic unloading under hydrostatic pressure condition is proposed. T...In order to investigate zonal disintegration mechanism of isotropic rock masses around a deep spherical tunnel, a new mechanical model subjected to dynamic unloading under hydrostatic pressure condition is proposed. The total elastic stress-field distributions is determined using the elastodynamic equation. The effects of unloading rate and dynamic mechanical parameters of isotropic deep rock masses on the zonal disintegration phenomenon of the surrounding rock masses around a deep spherical tunnel as well as the total elastic stress field distributions are considered. The number and size of fractured and non-fractured zones are determined by using the Hoek-Brown criterion. Numerical computation is carried out. It is found from numerical results that the number of fractured zones increases with increasing the disturbance coefficient, in-situ stress, unloading time and unloading rate, and it decreases with increasing parameter geological strength index, the strength parameter and the uniaxial compressive strength of intact rock.展开更多
The homoclinic bifurcations in four dimensional vector fields are investigated by setting up a local coordinates near the homoclinic orbit. This homoclinic orbit is nonprincipal in the meanings that its positive semi-...The homoclinic bifurcations in four dimensional vector fields are investigated by setting up a local coordinates near the homoclinic orbit. This homoclinic orbit is nonprincipal in the meanings that its positive semi-orbit takes orbit flip and its unstable foliation takes inclination flip. The existence, nonexistence, uniqueness and coexistence of the 1-homoclinic orbit and the 1-periodic orbit are studied. The existence of the twofold periodic orbit and three-fold periodic orbit are also obtained.展开更多
This paper presents an Euler discretized inertial delayed neuron model, and its bifurcation dynamical behaviors are discussed. By using the associated characteristic model, center manifold theorem and the normal form ...This paper presents an Euler discretized inertial delayed neuron model, and its bifurcation dynamical behaviors are discussed. By using the associated characteristic model, center manifold theorem and the normal form method, it is shown that the model not only undergoes codimension one(flip, Neimark-Sacker) bifurcation, but also undergoes cusp and resonance bifurcation(1:1 and 1:2) of codimension two. Further, it is found that the parity of delay has some effect on bifurcation behaviors. Finally, some numerical simulations are given to support the analytic results and explore complex dynamics, such as periodic orbits near homoclinic orbits, quasiperiodic orbits, and chaotic orbits.展开更多
Based on the magnetospheric kinetic theory, a model is developed to specify the flux of energetic electrons in the inner and middle magnetosphere. Under the assumption of adiabatic motion and isotropic particle distri...Based on the magnetospheric kinetic theory, a model is developed to specify the flux of energetic electrons in the inner and middle magnetosphere. Under the assumption of adiabatic motion and isotropic particle distribution maintained by pitch-angle scattering, the model calculates the electron flux by following bounce-averaged electric field, gradient, and curvature drift in the time dependent electric and magnetic field, meanwhile it counts the electron loss caused by pitch angle scattering. Using the model, the clectron flux distribution during a magnetic storm was calculated and compared with the observation data from the geosynchronous orbit. It is shown that the model can successfully reproduce most of the major electron flux enhancements observed at the geosynchronous orbit and generally tracks the satellite data well. The rms errors of the modeled logarithm of flux are between 0.5-1.0.展开更多
The shape and gravitational field of ellipsoidal satellites are studied by using the tidal theory. For ellipsoidal satellites, the following conclusions were obtained: Firstly, in the early stage of the satellite form...The shape and gravitational field of ellipsoidal satellites are studied by using the tidal theory. For ellipsoidal satellites, the following conclusions were obtained: Firstly, in the early stage of the satellite formation, strong tidal friction allowed the satellites move in a synchronous orbit and evolve into a triaxial ellipsoidal shape. Because the tidal potential from the associated primary and the centrifugal potential from the satellite spin are nearly fixed at the surface, the early satellites are the viscoelastic celestial body, and their surfaces are nearly in the hydrostatic equilibrium state. The deformation is fixed in the surface of the satellite. By using the related parameters of primary and satellite, the tidal height and the theoretical lengths of three primary radii of the ellipsoidal satellite are calculated. Secondly, the current ellipsoidal satellites nearly maintain their ellipsoidal shape from solidification, which happened a few billion years ago. According to the satellite shape, we estimated the orbital period and spinning angular velocity, and then determined the evolution of the orbit. Lastly, assuming an ellipsoidal satellite originated in the hydrostatic equilibrium state, the surface shape could be determined by tidal, rotation, and additional potentials. However, the shape of the satellite's geoid differs from its surface shape. The relationship between these shapes is discussed and a formula for the gravitational harmonic coefficients is presented.展开更多
文摘A real time algorithm is presented here to recognize and analyze 8 channel simultaneous electro cardiograph(ECG). The algorithm transforms 8 channel simultaneous ECG into three orthogonal vectors and spatial velocity first, then forms the spatial velocity sample, and uses this spatial velocity sample to recognize each beat. The algorithm computes the averaged parameters by using averaged spatial velocity and the averaged ECG and the current parameters by using the current beat period and current width of QRS. The algorithm can recognize P, QRS and T onsets and ends of simultaneous 12 lead ECG precisely, and some arrhythmias such as premature ventricular beat, ventricular escape beat, R on T, bigeminy, trigeminy. The algorithm software works well on a real 8 channel ECG system and meets the demands of designing.
基金supported by the State Key Program of National Natural Science Foundation of China(No.51234005)the State Key Program of National Natural Science Foundation-Coal Joint Fund(No.51134018)
文摘Common short bolts of equal length are widely used to support the roofs of roadways in coal mines.However, they are insufficient to keep the roof stable against large deformations, so docking long bolts with high levels of elongation that can adapt to large deformations of the surrounding rock have been adopted. This paper proposes a collaborative support method that uses long and short bolts. In this study,the mechanism of docking long bolts and collaborative support was studied. Numerical simulation, similarity simulation, and field testing were used to analyze the distribution law of the displacement, stress,and plastic failure in the surrounding rock under different support schemes. Compared with the equal-length short bolt support, the collaborative support changed the maximum principal stress of the shallow roof from tensile stress to compressive stress, and the minimum principal stress of the roof significantly increased. The stress concentration degree of the anchorage zone clearly increased. The deformation of the roof and the two sides was greatly reduced, and the subsidence shape of the shallow roof changed from serrated to a smooth curve. The roof integrity was enhanced, and the roof moved down as a whole. Plastic failure significantly decreased, and the plastic zone of the roof was within the anchorage range. The similarity simulation results showed that, under the maximum mining stress,the roof collapsed with the equal-length short bolt support but remained stable with the collaborative support. The collaborative support method was successfully applied in the field and clearly improved the stability of the surrounding rock for a large deformation roadway.
基金Projects(51325903,51279218,51478065)supported by the National Natural Science Foundation of ChinaProject(2014CB046903)supported by the National Basic of Research Program ChinaProjects(cstc2013kjrc-ljrccj0001,cstc2013jcyjys30002,cstc2015jcyjys30001)supported by Chongqing Science and Technology Commission(CSTC),Chongqing,China
文摘In order to investigate zonal disintegration mechanism of isotropic rock masses around a deep spherical tunnel, a new mechanical model subjected to dynamic unloading under hydrostatic pressure condition is proposed. The total elastic stress-field distributions is determined using the elastodynamic equation. The effects of unloading rate and dynamic mechanical parameters of isotropic deep rock masses on the zonal disintegration phenomenon of the surrounding rock masses around a deep spherical tunnel as well as the total elastic stress field distributions are considered. The number and size of fractured and non-fractured zones are determined by using the Hoek-Brown criterion. Numerical computation is carried out. It is found from numerical results that the number of fractured zones increases with increasing the disturbance coefficient, in-situ stress, unloading time and unloading rate, and it decreases with increasing parameter geological strength index, the strength parameter and the uniaxial compressive strength of intact rock.
文摘The homoclinic bifurcations in four dimensional vector fields are investigated by setting up a local coordinates near the homoclinic orbit. This homoclinic orbit is nonprincipal in the meanings that its positive semi-orbit takes orbit flip and its unstable foliation takes inclination flip. The existence, nonexistence, uniqueness and coexistence of the 1-homoclinic orbit and the 1-periodic orbit are studied. The existence of the twofold periodic orbit and three-fold periodic orbit are also obtained.
基金supported by the National Priorities Research Program through the Qatar National Research Funda member of Qatar Foundation(Grant No.NPRP 4-1162-1-181)+2 种基金the Natural Science Foundation of China(Grant Nos.6140331361374078&61375102)the Natural Science Foundation Project of Chongqing CSTC(Grant No.cstc2014jcyj A40014)
文摘This paper presents an Euler discretized inertial delayed neuron model, and its bifurcation dynamical behaviors are discussed. By using the associated characteristic model, center manifold theorem and the normal form method, it is shown that the model not only undergoes codimension one(flip, Neimark-Sacker) bifurcation, but also undergoes cusp and resonance bifurcation(1:1 and 1:2) of codimension two. Further, it is found that the parity of delay has some effect on bifurcation behaviors. Finally, some numerical simulations are given to support the analytic results and explore complex dynamics, such as periodic orbits near homoclinic orbits, quasiperiodic orbits, and chaotic orbits.
基金supported by the National Natural Science Foundation of China(Grant No.40704032)
文摘Based on the magnetospheric kinetic theory, a model is developed to specify the flux of energetic electrons in the inner and middle magnetosphere. Under the assumption of adiabatic motion and isotropic particle distribution maintained by pitch-angle scattering, the model calculates the electron flux by following bounce-averaged electric field, gradient, and curvature drift in the time dependent electric and magnetic field, meanwhile it counts the electron loss caused by pitch angle scattering. Using the model, the clectron flux distribution during a magnetic storm was calculated and compared with the observation data from the geosynchronous orbit. It is shown that the model can successfully reproduce most of the major electron flux enhancements observed at the geosynchronous orbit and generally tracks the satellite data well. The rms errors of the modeled logarithm of flux are between 0.5-1.0.
基金supported by the National Natural Science Foundation of China(Grant Nos.41174014 and D0401)
文摘The shape and gravitational field of ellipsoidal satellites are studied by using the tidal theory. For ellipsoidal satellites, the following conclusions were obtained: Firstly, in the early stage of the satellite formation, strong tidal friction allowed the satellites move in a synchronous orbit and evolve into a triaxial ellipsoidal shape. Because the tidal potential from the associated primary and the centrifugal potential from the satellite spin are nearly fixed at the surface, the early satellites are the viscoelastic celestial body, and their surfaces are nearly in the hydrostatic equilibrium state. The deformation is fixed in the surface of the satellite. By using the related parameters of primary and satellite, the tidal height and the theoretical lengths of three primary radii of the ellipsoidal satellite are calculated. Secondly, the current ellipsoidal satellites nearly maintain their ellipsoidal shape from solidification, which happened a few billion years ago. According to the satellite shape, we estimated the orbital period and spinning angular velocity, and then determined the evolution of the orbit. Lastly, assuming an ellipsoidal satellite originated in the hydrostatic equilibrium state, the surface shape could be determined by tidal, rotation, and additional potentials. However, the shape of the satellite's geoid differs from its surface shape. The relationship between these shapes is discussed and a formula for the gravitational harmonic coefficients is presented.