Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soi...Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soil microbial community of this type of vegetation in response to environmental change. Using phospholipid fatty acids (PLFA), we investigated soil microbial community composition along an elevational gradient (3094-4131 m above sea level) on Mount Yajiageng, and we explored the impact of plant functional groups and soil chemistry on the soil microbial community. Except for Arbuscular Mycorrhizal fungi (AM fungi) biomarker 18:2ω6,9 increasing significantly, other biomarkers did not show a consistent trend with the elevational gradient. Microbial biomass quantified by total PLFAs did not show the elevational trend and had mean values ranging from 1.64 to 4.09 ktmol per g organic carbon (OC), which had the maximum value at the highest site. Bacterial PLFAs exhibited a similar trend with total PLFAs, and its mean values ranged from 0.82 to 1.81 μmol (g OC)-1. The bacterial to fungal biomass ratios had the minimum value at the highest site, which might be related to temperature and soil total nitrogen (TN). The ratios of Gram-negative to Gram-positive bacteria had a significantly negative correlation with soil TN and had the maximum value at the highest site. Leguminous plant coverage and soil TN explained 58% of the total variation in the soil microbial community and could achieve the same interpretation as the whole model. Other factors may influence the soil microbial community through interaction with leguminous plant coverage and soil TN. Soil chemistry and plant functional group composition in substantial amounts explained different parts of the variation within the soil microbial community, and the interaction between them had no impact on the soil microbial community maybe beeause long-term grazing greatly reduces litter. In sum, although there were obvious differences in soil microbial communities along the elevation gradient, there were no clear elevational trends found in general. Plant functional groups and soil chemistry respectively affect the different aspects of soil microbial community. Leguminous plant coverage and soil TN had important effects in shaping soil microbial community.展开更多
Clear-cutting, a management practice applied to many beech forests in the North of Spain, modifies microclimate and, consequently, the composition of the understory plant community in the disturbed areas. The objectiv...Clear-cutting, a management practice applied to many beech forests in the North of Spain, modifies microclimate and, consequently, the composition of the understory plant community in the disturbed areas. The objectives of this study were to assess if changes in the understory vegetation caused by altered light microclimate after clear-cutting affect the infectivity of arbuscular mycorrhizal fungi (AMF) on herbaceous plant species in beech (Fagus sylvatica L.) forests naturally regenerating from clear-cutting and to test if the use of bioassays for studying the infectivity of native AMF could provide useful information to improve the management of clear-cut areas. Three nearby beech forests in northwest Navarra, Spain, a region in the northwest part of the Pyrenees, were selected: an unmanaged forest, a forest clear-cut in 1996, and another forest clear-cut in 2001. High stem density in the forest clear-cut in 1996 (44 000 trees ha-1) attenuated photosynthetic active radiation (PAR) and impaired the growth of herbaceous species within the ecosystem. The percentage of AMF colonization of plants in bioassays performed on soil samples collected from the forest clear-cut in 1996 was always lower than 10S. In the forest clear-cut in 2001, where soil was covered by perennial grasses, PAR was high and the infectivity of native AMF achieved minimum values in spring and autumn and a maximum value in summer. In contrast, the infectivity of native AMF in the unmanaged forest remained similar across the seasons. Our results demonstrated that changes in the composition of understory vegetation within beech forests strongly affected the infectivity of native AMF in clear-cut areas and suggested that the assessment of the infectivity of native AMF through bioassays could provide helpful information for planning either the removal of overstory when the tree density is so high that it impairs the correct development of herbaceous species or the plantation of new seedlings when high light intensity negatively affects the establishment of shade species.展开更多
基金supported by the CAS/SAFEA International Partnership Program for Creative Research Teams (KZZD-EW-TZ-06)
文摘Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soil microbial community of this type of vegetation in response to environmental change. Using phospholipid fatty acids (PLFA), we investigated soil microbial community composition along an elevational gradient (3094-4131 m above sea level) on Mount Yajiageng, and we explored the impact of plant functional groups and soil chemistry on the soil microbial community. Except for Arbuscular Mycorrhizal fungi (AM fungi) biomarker 18:2ω6,9 increasing significantly, other biomarkers did not show a consistent trend with the elevational gradient. Microbial biomass quantified by total PLFAs did not show the elevational trend and had mean values ranging from 1.64 to 4.09 ktmol per g organic carbon (OC), which had the maximum value at the highest site. Bacterial PLFAs exhibited a similar trend with total PLFAs, and its mean values ranged from 0.82 to 1.81 μmol (g OC)-1. The bacterial to fungal biomass ratios had the minimum value at the highest site, which might be related to temperature and soil total nitrogen (TN). The ratios of Gram-negative to Gram-positive bacteria had a significantly negative correlation with soil TN and had the maximum value at the highest site. Leguminous plant coverage and soil TN explained 58% of the total variation in the soil microbial community and could achieve the same interpretation as the whole model. Other factors may influence the soil microbial community through interaction with leguminous plant coverage and soil TN. Soil chemistry and plant functional group composition in substantial amounts explained different parts of the variation within the soil microbial community, and the interaction between them had no impact on the soil microbial community maybe beeause long-term grazing greatly reduces litter. In sum, although there were obvious differences in soil microbial communities along the elevation gradient, there were no clear elevational trends found in general. Plant functional groups and soil chemistry respectively affect the different aspects of soil microbial community. Leguminous plant coverage and soil TN had important effects in shaping soil microbial community.
基金Supported by the University Foundation of Navarra,Spainthe Caja Navarra,Spainand the University of Navarra,Inc.,Spain.
文摘Clear-cutting, a management practice applied to many beech forests in the North of Spain, modifies microclimate and, consequently, the composition of the understory plant community in the disturbed areas. The objectives of this study were to assess if changes in the understory vegetation caused by altered light microclimate after clear-cutting affect the infectivity of arbuscular mycorrhizal fungi (AMF) on herbaceous plant species in beech (Fagus sylvatica L.) forests naturally regenerating from clear-cutting and to test if the use of bioassays for studying the infectivity of native AMF could provide useful information to improve the management of clear-cut areas. Three nearby beech forests in northwest Navarra, Spain, a region in the northwest part of the Pyrenees, were selected: an unmanaged forest, a forest clear-cut in 1996, and another forest clear-cut in 2001. High stem density in the forest clear-cut in 1996 (44 000 trees ha-1) attenuated photosynthetic active radiation (PAR) and impaired the growth of herbaceous species within the ecosystem. The percentage of AMF colonization of plants in bioassays performed on soil samples collected from the forest clear-cut in 1996 was always lower than 10S. In the forest clear-cut in 2001, where soil was covered by perennial grasses, PAR was high and the infectivity of native AMF achieved minimum values in spring and autumn and a maximum value in summer. In contrast, the infectivity of native AMF in the unmanaged forest remained similar across the seasons. Our results demonstrated that changes in the composition of understory vegetation within beech forests strongly affected the infectivity of native AMF in clear-cut areas and suggested that the assessment of the infectivity of native AMF through bioassays could provide helpful information for planning either the removal of overstory when the tree density is so high that it impairs the correct development of herbaceous species or the plantation of new seedlings when high light intensity negatively affects the establishment of shade species.