The use of Network hanger arrangement, a development of the classical Nielsen V-hanger system, in steel bowstring arch bridges allows for important steel saving, with very slender main elements, owing to the remarkabl...The use of Network hanger arrangement, a development of the classical Nielsen V-hanger system, in steel bowstring arch bridges allows for important steel saving, with very slender main elements, owing to the remarkable reduction of bending stresses in the arches and tie beams. The present paper describes the main features of the design and construction of several long-span arch bridges of this typology in Spain: the three pedestrian footbridges for the Madrid cycling ring track, with spans of 52, 60 and 80 m, the Bridge over River Deba in Guipuzcoa with a span of 110 m and Palma del Rio Bridge over River Guadalquivir in Cordoba, 130 m long. In all cases, two inclined arches linked at the crown were implemented, a very effective disposition to reduce the out-of-plane buckling length. The multiple crossings of the hanger system, consisting of prestressed bars in the case of Deba Bridge and the footbridges, and locked coil cables for Palma del Rio Bridge, were dealt with by means of crossing devices which led to a technically satisfactory solution with minimal visual impact. An innovative approach to bowstring arches was introduced in Valdebebas Bridge over M-12 motorway in Madrid, next to the new T-4 Terminal of Barajas Airport, with a span of 162 m, where the hangers are replaced by a structural steel mesh -diagrid- which acts as the web of a simply-supported beam whose compression head is the arch and the tie beam is the deck.展开更多
The dynamic characteristics of three-tower and two-span suspension bridge are analyzed at different global temperatures. An equivalent cable inner force method is proposed to consider temperature effects and to study ...The dynamic characteristics of three-tower and two-span suspension bridge are analyzed at different global temperatures. An equivalent cable inner force method is proposed to consider temperature effects and to study the effects of environmental temperature on dynamic characteristics of Taizhou Yangtze River Bridge. The result demonstrates that the effects of temperature can not be neglected in static or dynamic analysis of Taizhou Yangtze River Bridge. The relationship between temperature and frequency is negative. The effects of temperature should be taken into account in experimental modal analysis of long-span bridges and damage identification.展开更多
It is helpful to improve the seismic design theory of long-span continuous bridges for studying the seismic performance of each cantilever construction state.Taking the Bridge 1 in the north of Changbai-Mountain inter...It is helpful to improve the seismic design theory of long-span continuous bridges for studying the seismic performance of each cantilever construction state.Taking the Bridge 1 in the north of Changbai-Mountain international tourism resort as an example,the authors studied it in shutdown phase and the cantilever construction process,established the simulation model by using Midas / civil,and analyzed time-history of each construction stage for the bridge.The study shows that long-span bridge cantilever construction in northeastern China can be divided into two-year tasks for construction(suspending in winter).It is needed to think about seismic stability of the cantilever position in shut-down phase of winter.The effect of longitudinal vibration is the most disadvantageous influence to bridge,and its calculation results can provide reference for seismic design of similar bridges in the future.展开更多
In this paper, an FEM (Finite Element Method) model is established for the main span of the bridge, with the main box arch and suspender members modeled by beam elements, truss members by truss elements, and the ort...In this paper, an FEM (Finite Element Method) model is established for the main span of the bridge, with the main box arch and suspender members modeled by beam elements, truss members by truss elements, and the orthotropic steel deck by plate elements. The natural frequencies and mode shapes are acquired by the eigen-parameter analysis. By input of a typical earthquake excitation to the bridge system, the dynamic responses of the bridge, including the displacement and accelerations of the main joints of the structure, and the seismic forces and stresses of the key members, are calculated by the structural analysis program, based on which the main laws of the seismic responses of the bridge are summarized, and the safety of the structure is evaluated.展开更多
The "Structural Health Monitoring" is a project supported by National Natural Science Foundation for Distinguished Young Scholars of China(Grant No.50725828).To meet the urgent requirements of analysis and a...The "Structural Health Monitoring" is a project supported by National Natural Science Foundation for Distinguished Young Scholars of China(Grant No.50725828).To meet the urgent requirements of analysis and assessment of mass monitoring data of bridge environmental actions and structural responses,the monitoring of environmental actions and action effect modeling methods,dynamic performance monitoring and early warning methods,condition assessment and operation maintenance methods of key members are systematically studied in close combination with structural characteristics of long-span cable-stayed bridges and suspension bridges.The paper reports the progress of the project as follows.(1) The environmental action modeling methods of long-span bridges are established based on monitoring data of temperature,sustained wind and typhoon.The action effect modeling methods are further developed in combination with the multi-scale baseline finite element modeling method for long-span bridges.(2) The identification methods of global dynamic characteristics and internal forces of cables and hangers for long-span cable-stayed bridges and suspension bridges are proposed using the vibration monitoring data,on the basis of which the condition monitoring and early warning methods of bridges are developed using the environmental-condition-normalization technique.(3) The analysis methods for fatigue loading effect of welded details of steel box girder,temperature and traffic loading effect of expansion joint are presented based on long-term monitoring data of strain and beam-end displacement,on the basis of which the service performance assessment and remaining life prediction methods are developed.展开更多
文摘The use of Network hanger arrangement, a development of the classical Nielsen V-hanger system, in steel bowstring arch bridges allows for important steel saving, with very slender main elements, owing to the remarkable reduction of bending stresses in the arches and tie beams. The present paper describes the main features of the design and construction of several long-span arch bridges of this typology in Spain: the three pedestrian footbridges for the Madrid cycling ring track, with spans of 52, 60 and 80 m, the Bridge over River Deba in Guipuzcoa with a span of 110 m and Palma del Rio Bridge over River Guadalquivir in Cordoba, 130 m long. In all cases, two inclined arches linked at the crown were implemented, a very effective disposition to reduce the out-of-plane buckling length. The multiple crossings of the hanger system, consisting of prestressed bars in the case of Deba Bridge and the footbridges, and locked coil cables for Palma del Rio Bridge, were dealt with by means of crossing devices which led to a technically satisfactory solution with minimal visual impact. An innovative approach to bowstring arches was introduced in Valdebebas Bridge over M-12 motorway in Madrid, next to the new T-4 Terminal of Barajas Airport, with a span of 162 m, where the hangers are replaced by a structural steel mesh -diagrid- which acts as the web of a simply-supported beam whose compression head is the arch and the tie beam is the deck.
基金National Science and Technology Support Program of China ( No. 2009BAG15B03)National Sci-ence Foundation Support Project( No. 51078080)
文摘The dynamic characteristics of three-tower and two-span suspension bridge are analyzed at different global temperatures. An equivalent cable inner force method is proposed to consider temperature effects and to study the effects of environmental temperature on dynamic characteristics of Taizhou Yangtze River Bridge. The result demonstrates that the effects of temperature can not be neglected in static or dynamic analysis of Taizhou Yangtze River Bridge. The relationship between temperature and frequency is negative. The effects of temperature should be taken into account in experimental modal analysis of long-span bridges and damage identification.
文摘It is helpful to improve the seismic design theory of long-span continuous bridges for studying the seismic performance of each cantilever construction state.Taking the Bridge 1 in the north of Changbai-Mountain international tourism resort as an example,the authors studied it in shutdown phase and the cantilever construction process,established the simulation model by using Midas / civil,and analyzed time-history of each construction stage for the bridge.The study shows that long-span bridge cantilever construction in northeastern China can be divided into two-year tasks for construction(suspending in winter).It is needed to think about seismic stability of the cantilever position in shut-down phase of winter.The effect of longitudinal vibration is the most disadvantageous influence to bridge,and its calculation results can provide reference for seismic design of similar bridges in the future.
基金Acknowledgments: This study is sponsored by the Natural Science Foundation of China (No. 90715008) and the Flander (Belgium)-China Bilateral Project (No. BIL07/07).
文摘In this paper, an FEM (Finite Element Method) model is established for the main span of the bridge, with the main box arch and suspender members modeled by beam elements, truss members by truss elements, and the orthotropic steel deck by plate elements. The natural frequencies and mode shapes are acquired by the eigen-parameter analysis. By input of a typical earthquake excitation to the bridge system, the dynamic responses of the bridge, including the displacement and accelerations of the main joints of the structure, and the seismic forces and stresses of the key members, are calculated by the structural analysis program, based on which the main laws of the seismic responses of the bridge are summarized, and the safety of the structure is evaluated.
基金supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 50725828)
文摘The "Structural Health Monitoring" is a project supported by National Natural Science Foundation for Distinguished Young Scholars of China(Grant No.50725828).To meet the urgent requirements of analysis and assessment of mass monitoring data of bridge environmental actions and structural responses,the monitoring of environmental actions and action effect modeling methods,dynamic performance monitoring and early warning methods,condition assessment and operation maintenance methods of key members are systematically studied in close combination with structural characteristics of long-span cable-stayed bridges and suspension bridges.The paper reports the progress of the project as follows.(1) The environmental action modeling methods of long-span bridges are established based on monitoring data of temperature,sustained wind and typhoon.The action effect modeling methods are further developed in combination with the multi-scale baseline finite element modeling method for long-span bridges.(2) The identification methods of global dynamic characteristics and internal forces of cables and hangers for long-span cable-stayed bridges and suspension bridges are proposed using the vibration monitoring data,on the basis of which the condition monitoring and early warning methods of bridges are developed using the environmental-condition-normalization technique.(3) The analysis methods for fatigue loading effect of welded details of steel box girder,temperature and traffic loading effect of expansion joint are presented based on long-term monitoring data of strain and beam-end displacement,on the basis of which the service performance assessment and remaining life prediction methods are developed.