Computational Fluid Dynamics (CFD) methods have opened a new field to perform aerodynamic studies saving money and time. The difficulties presented by this method to calculate complex flow field problems imply that ...Computational Fluid Dynamics (CFD) methods have opened a new field to perform aerodynamic studies saving money and time. The difficulties presented by this method to calculate complex flow field problems imply that CFD validation is needed to provide correct results. Experimental data have recently been used to validate the accuracy of CFD predictions. Particle Image Velocimetry (PIV) has shown to be a powerful tool in the investigation of complex flows. The aim of this paper is to present results from PIV experiments that would be interesting for CFD validation. Regarding aircraft operations, the short runway available implies the necessity of equipment which helps to take-off performances. Ski-jump ramp system improves aircraft performances by an increment of lift resulting in successful take-off operations. The ski-jump ramp presence generates a complex flow bounded by a turbulent shear layer and a low velocity recirculation bubble over the end of the flight deck. The adverse effects on the aircraft aerodynamics affect to pilot safe operations, so this region is an interesting problem to be studied by means of wind tunnel experimental tests.展开更多
A highly ordered porous alumina template with pores of 45 nm in diameter was synthesized by a two-step electrochemical anodizing process. The influence of pore-enlargement treatment on the porous structure and tribolo...A highly ordered porous alumina template with pores of 45 nm in diameter was synthesized by a two-step electrochemical anodizing process. The influence of pore-enlargement treatment on the porous structure and tribological properties of the film was investigated, and ultrasonic impregnation technology was applied on it to form self-lubricating surface. The structure of the self-lubricating film and its tribological properties were investigated in detail. It can be concluded that the optimum time of pore-enlargement treatment is 20 min. The diameter of the pores and the surface porosity of the film are about 70 nm and 30%, respectively, while the film maintains the property of its high hardness. Under the same friction condition, the frictional coefficient of the self-lubricating film is 0. 18, much lower than that of the anodic aluminum oxide template, which is 0.52. In comparison with the lubricating surface of non-porous dense anodic aluminum oxide template, the lubricating surface fabricated by the ultrasonic impregnation method on the porous anodic aluminum oxide template keeps longer period with low friction coefficient. SEM examination shows that some C60 particles have been embedded in ultrasonic impregnation technology. the nanoholes of the anodic aluminum oxide template by the展开更多
文摘Computational Fluid Dynamics (CFD) methods have opened a new field to perform aerodynamic studies saving money and time. The difficulties presented by this method to calculate complex flow field problems imply that CFD validation is needed to provide correct results. Experimental data have recently been used to validate the accuracy of CFD predictions. Particle Image Velocimetry (PIV) has shown to be a powerful tool in the investigation of complex flows. The aim of this paper is to present results from PIV experiments that would be interesting for CFD validation. Regarding aircraft operations, the short runway available implies the necessity of equipment which helps to take-off performances. Ski-jump ramp system improves aircraft performances by an increment of lift resulting in successful take-off operations. The ski-jump ramp presence generates a complex flow bounded by a turbulent shear layer and a low velocity recirculation bubble over the end of the flight deck. The adverse effects on the aircraft aerodynamics affect to pilot safe operations, so this region is an interesting problem to be studied by means of wind tunnel experimental tests.
基金Project(2007CB607605) supported by the National Basic Research Program of China
文摘A highly ordered porous alumina template with pores of 45 nm in diameter was synthesized by a two-step electrochemical anodizing process. The influence of pore-enlargement treatment on the porous structure and tribological properties of the film was investigated, and ultrasonic impregnation technology was applied on it to form self-lubricating surface. The structure of the self-lubricating film and its tribological properties were investigated in detail. It can be concluded that the optimum time of pore-enlargement treatment is 20 min. The diameter of the pores and the surface porosity of the film are about 70 nm and 30%, respectively, while the film maintains the property of its high hardness. Under the same friction condition, the frictional coefficient of the self-lubricating film is 0. 18, much lower than that of the anodic aluminum oxide template, which is 0.52. In comparison with the lubricating surface of non-porous dense anodic aluminum oxide template, the lubricating surface fabricated by the ultrasonic impregnation method on the porous anodic aluminum oxide template keeps longer period with low friction coefficient. SEM examination shows that some C60 particles have been embedded in ultrasonic impregnation technology. the nanoholes of the anodic aluminum oxide template by the