Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In...Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models.展开更多
To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance...To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance the quality of product in hot strip rolling.Meanwhile,for enriching data information and ensuring data quality,experimental data were collected from a hot-rolled plant to set up prediction models,as well as the prediction performance of models was evaluated by calculating multiple indicators.Furthermore,the traditional SVM model and the combined prediction models with particle swarm optimization(PSO)algorithm and the principal component analysis combined with cuckoo search(PCA-CS)optimization strategies are presented to make a comparison.Besides,the prediction performance comparisons of the three models are discussed.Finally,the experimental results revealed that the PCA-CS-SVM model has the highest prediction accuracy and the fastest convergence speed.Furthermore,the root mean squared error(RMSE)of PCA-CS-SVM model is 2.04μm,and 98.15%of prediction data have an absolute error of less than 4.5μm.Especially,the results also proved that PCA-CS-SVM model not only satisfies precision requirement but also has certain guiding significance for the actual production of hot strip rolling.展开更多
基金supported by the National Key Research and Development Program of China [grant number2017YFA0604500]
文摘Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models.
基金Project(52005358)supported by the National Natural Science Foundation of ChinaProject(2018YFB1307902)supported by the National Key R&D Program of China+1 种基金Project(201901D111243)supported by the Natural Science Foundation of Shanxi Province,ChinaProject(2019-KF-25-05)supported by the Natural Science Foundation of Liaoning Province,China。
文摘To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance the quality of product in hot strip rolling.Meanwhile,for enriching data information and ensuring data quality,experimental data were collected from a hot-rolled plant to set up prediction models,as well as the prediction performance of models was evaluated by calculating multiple indicators.Furthermore,the traditional SVM model and the combined prediction models with particle swarm optimization(PSO)algorithm and the principal component analysis combined with cuckoo search(PCA-CS)optimization strategies are presented to make a comparison.Besides,the prediction performance comparisons of the three models are discussed.Finally,the experimental results revealed that the PCA-CS-SVM model has the highest prediction accuracy and the fastest convergence speed.Furthermore,the root mean squared error(RMSE)of PCA-CS-SVM model is 2.04μm,and 98.15%of prediction data have an absolute error of less than 4.5μm.Especially,the results also proved that PCA-CS-SVM model not only satisfies precision requirement but also has certain guiding significance for the actual production of hot strip rolling.