A novel numerical algorithm of fault location estimation for double line to ground fault involving different phases from each of two parallel lines is presented in this paper.It is based on the one terminal voltag...A novel numerical algorithm of fault location estimation for double line to ground fault involving different phases from each of two parallel lines is presented in this paper.It is based on the one terminal voltage and current data.The loop and nodal equations comparing faulted phase with non faulted phase of two parallel lines are introduced in the fault location estimation models,in which the source impedance of a remote end is not involved.The effects of load flow and fault resistance on the accuracy of fault location are effectively eliminated,therefore precise algorithms of locating fault are derived.The algorithm is demonstrated by digital computer simulations.展开更多
The received signal of the polarization sensitive array is proved to have trilinear model characteristics. The blind parallel factor(PARAFAC) signal detection algorithm for the polarization sensitive array is propos...The received signal of the polarization sensitive array is proved to have trilinear model characteristics. The blind parallel factor(PARAFAC) signal detection algorithm for the polarization sensitive array is proposed. The trilinear alternating least square (TALS) algorithm is used to abtain the source matrix, and then the matrix is judged. Simulation results show that the bit error rate (BER) of the detection algorithm is close to that of the non-blind decorrelating method and the algorithm works well under the array error condition. BER difference between the non-blind method and this algorithm is less than 2 dB under a high SNR. The algorithm is blind and robust. The channel fading, the direction of arrive(DOA) imformation and the polarization information are needless in the algorithm.展开更多
The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the dat...The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the data in the frequency domain, which is very suitable for parallel computation. With the advantage of MPI and based on an analysis of the flow of the 3D magnetotelluric serial forward algorithm, we suggest the idea of parallel computation and apply it. Three theoretical models are tested and the execution efficiency is compared in different situations. The results indicate that the parallel 3D forward modeling computation is correct and the efficiency is greatly improved. This method is suitable for large size geophysical computations.展开更多
A novel dual-band planar microstrip filter using parallel coupled microstrip lines and open-loop stepped-impedance resonators(SIRs)loaded with two shunt open stubs is presented.By tuning the physical lengths of open...A novel dual-band planar microstrip filter using parallel coupled microstrip lines and open-loop stepped-impedance resonators(SIRs)loaded with two shunt open stubs is presented.By tuning the physical lengths of open-loop SIRs,parallel coupled microstrip lines and two stubs,the bandpass filter has good dual-passband performance at 2.55 and 5.35 GHz and high isolation between the two passbands.The relative bandwidths of the two passbands are 11.8% and 16.8%,respectively.Compared with the conventional open-loop SIR filters,the designed filter has a comparatively broader fractional bandwidth at the second passband.So it can cover all the wireless LAN(local area network)bands.In addition,the filter has the features of low loss,high rejection and low ripple.The measured results are in good agreement with the simulated responses by HFSS software.展开更多
Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs ...Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.展开更多
A systematic methodology for solving the inverse dynamics of the Delta robot is presented.First,the inverse kinematics is solved based on the vector method.A new form of the Jacobi matrix formulized by the vectors is ...A systematic methodology for solving the inverse dynamics of the Delta robot is presented.First,the inverse kinematics is solved based on the vector method.A new form of the Jacobi matrix formulized by the vectors is obtained so the three types kinematics singularities namely inverse, direct and combined types, can be identified with the physical meaning.Then based on the principle of virtual work, a methodology for driving the dynamical equations of motion is developed.Meanwhile the whole actuating torques, the torques caused by the gravity, the velocity and the acceleration are computed respectively in the numerical example. Results show that torque caused by the acceleration term is much bigger than the other two terms.This approach leads to efficient algorithms since the constraint forces and moments of the robot system have been eliminated from the equations of motion and there is no differential equation for the whole procedure when the principle of virtual work is applied to solving the inverse dynamical problem.展开更多
To obtain the required articular velocities as lower as possible for the given kinematics of the moving platform, this paper focuses on this kind of articular velocities optimization of 6-DOF parallel manipulators. Ba...To obtain the required articular velocities as lower as possible for the given kinematics of the moving platform, this paper focuses on this kind of articular velocities optimization of 6-DOF parallel manipulators. Based on the inverse kinematic analysis, the H∞ norm of the weighted Jacobian matrix was adopted as the performance index to minimize the articular velocities, and then the optimal design problem was formulated to find a manipulator geometry that minimized the global performance index with the constraints of the workspace and structural parameters limits. Since the optimal design problem is a constrained nonlinear optimization problem without explicit analytical expressions, the genetic algorithm was applied to numerically solve the problem. Simulation results indicate that the articular velocities of the optimal manipulators can be the minimum while the kinematic reauirements of the moving platform are satisfied.展开更多
This paper presents a novel capacitance probe, i.e., paraUel-wire capacitance probe (PWCP), for two-phase flow measurement. Using finite element method (FEM), the sensitivity field of the PWCP is investigated and ...This paper presents a novel capacitance probe, i.e., paraUel-wire capacitance probe (PWCP), for two-phase flow measurement. Using finite element method (FEM), the sensitivity field of the PWCP is investigated and the optimum sensor geometry is determiend in term of the characterisitc parameters. Then, the response of PWCP for the oil-water stratified flow is calculated, and it is found the PWCP has better linearity and sensitivity to the variation of water-layer thickness, and is almost independant of the angle between the oil-water interface and the sensor electrode. Finally, the static experiment for oil-water stratified flow is carried out and the calibration method of liquid holdup is presented.展开更多
基金Supported by Science Foundation of Guangdong(No.990 577)
文摘A novel numerical algorithm of fault location estimation for double line to ground fault involving different phases from each of two parallel lines is presented in this paper.It is based on the one terminal voltage and current data.The loop and nodal equations comparing faulted phase with non faulted phase of two parallel lines are introduced in the fault location estimation models,in which the source impedance of a remote end is not involved.The effects of load flow and fault resistance on the accuracy of fault location are effectively eliminated,therefore precise algorithms of locating fault are derived.The algorithm is demonstrated by digital computer simulations.
文摘The received signal of the polarization sensitive array is proved to have trilinear model characteristics. The blind parallel factor(PARAFAC) signal detection algorithm for the polarization sensitive array is proposed. The trilinear alternating least square (TALS) algorithm is used to abtain the source matrix, and then the matrix is judged. Simulation results show that the bit error rate (BER) of the detection algorithm is close to that of the non-blind decorrelating method and the algorithm works well under the array error condition. BER difference between the non-blind method and this algorithm is less than 2 dB under a high SNR. The algorithm is blind and robust. The channel fading, the direction of arrive(DOA) imformation and the polarization information are needless in the algorithm.
基金This research is sponsored by the National Natural Science Foundation of China (No. 40374024).
文摘The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the data in the frequency domain, which is very suitable for parallel computation. With the advantage of MPI and based on an analysis of the flow of the 3D magnetotelluric serial forward algorithm, we suggest the idea of parallel computation and apply it. Three theoretical models are tested and the execution efficiency is compared in different situations. The results indicate that the parallel 3D forward modeling computation is correct and the efficiency is greatly improved. This method is suitable for large size geophysical computations.
基金The National Natural Science Foundation of China(No.60621002,60702027,60921063)the National Basic Research Program of China(973Program)(No.2010CB327400)the National High Technology Research and Development Program of China(863Program)(No.2008ZX03005-001,2008AA01Z223,2009AA011503)
文摘A novel dual-band planar microstrip filter using parallel coupled microstrip lines and open-loop stepped-impedance resonators(SIRs)loaded with two shunt open stubs is presented.By tuning the physical lengths of open-loop SIRs,parallel coupled microstrip lines and two stubs,the bandpass filter has good dual-passband performance at 2.55 and 5.35 GHz and high isolation between the two passbands.The relative bandwidths of the two passbands are 11.8% and 16.8%,respectively.Compared with the conventional open-loop SIR filters,the designed filter has a comparatively broader fractional bandwidth at the second passband.So it can cover all the wireless LAN(local area network)bands.In addition,the filter has the features of low loss,high rejection and low ripple.The measured results are in good agreement with the simulated responses by HFSS software.
基金Project(2002CB312200) supported by the National Key Fundamental Research and Development Program of China project(60574019) supported by the National Natural Science Foundation of China
文摘Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.
基金Supported by National Natural Science Foundation of China (No. 50375106) andKey Laboratory of Intelligent Manufacturing at Shantou University Grant (No. Imstu-2002-11).
文摘A systematic methodology for solving the inverse dynamics of the Delta robot is presented.First,the inverse kinematics is solved based on the vector method.A new form of the Jacobi matrix formulized by the vectors is obtained so the three types kinematics singularities namely inverse, direct and combined types, can be identified with the physical meaning.Then based on the principle of virtual work, a methodology for driving the dynamical equations of motion is developed.Meanwhile the whole actuating torques, the torques caused by the gravity, the velocity and the acceleration are computed respectively in the numerical example. Results show that torque caused by the acceleration term is much bigger than the other two terms.This approach leads to efficient algorithms since the constraint forces and moments of the robot system have been eliminated from the equations of motion and there is no differential equation for the whole procedure when the principle of virtual work is applied to solving the inverse dynamical problem.
文摘To obtain the required articular velocities as lower as possible for the given kinematics of the moving platform, this paper focuses on this kind of articular velocities optimization of 6-DOF parallel manipulators. Based on the inverse kinematic analysis, the H∞ norm of the weighted Jacobian matrix was adopted as the performance index to minimize the articular velocities, and then the optimal design problem was formulated to find a manipulator geometry that minimized the global performance index with the constraints of the workspace and structural parameters limits. Since the optimal design problem is a constrained nonlinear optimization problem without explicit analytical expressions, the genetic algorithm was applied to numerically solve the problem. Simulation results indicate that the articular velocities of the optimal manipulators can be the minimum while the kinematic reauirements of the moving platform are satisfied.
基金Supported by the National Natural Science Foundation of China (50974095, 41174109, 61104148), and the National Science and Technology Mai or Projects (2011ZX05020-006).
文摘This paper presents a novel capacitance probe, i.e., paraUel-wire capacitance probe (PWCP), for two-phase flow measurement. Using finite element method (FEM), the sensitivity field of the PWCP is investigated and the optimum sensor geometry is determiend in term of the characterisitc parameters. Then, the response of PWCP for the oil-water stratified flow is calculated, and it is found the PWCP has better linearity and sensitivity to the variation of water-layer thickness, and is almost independant of the angle between the oil-water interface and the sensor electrode. Finally, the static experiment for oil-water stratified flow is carried out and the calibration method of liquid holdup is presented.