This paper proposes a simple low cost SIR (sustainability index for roads) that can be easily implemented by any local government that has a flexible pavement road network. The SIR includes the three pillars of sust...This paper proposes a simple low cost SIR (sustainability index for roads) that can be easily implemented by any local government that has a flexible pavement road network. The SIR includes the three pillars of sustainability, economic, social and environmental. The economic pillar is development from a new perspective of pavement deterioration from the Snowy Mountains Engineering Corporation's Pavement Management System. The new perspective is easily seen when the deterioration is plotted in three dimensions. This new exponential curve provides an equation for the return on investment in a road network, in terms of a future pavement condition index versus the annual rehabilitation budget. The environmental pillar will be developed by determining which road rehabilitation treatments cause the most environmental damage and recreating the new curve with these treatments being incrementally removed. The resulting curves will provide the annual cost of minimizing environmental damage and the loss of pavement condition index for minimizing environmental damage. The social pillar is, consultation with the community on what pavement condition index they are willing to fund, that is, balancing annual cost, environmental damage and desired pavement condition. This more efficient reporting conforms with the USA Government Accounting Standards Board requirements but not necessarily with the International Financial Reporting Standards. This new SIR reduces the current financial reporting requirement for local govemments in Queensland, Australia and can greatly improve comparability of financial reporting, where local governments calibrate the pavement deterioration factors in their Pavement Management Systems and use the newly developed regional rulebase.展开更多
Path planning of Uninhabited Aerial Vehicle(UAV) is a complicated global optimum problem.In the paper,an improved Gravitational Search Algorithm(GSA) was proposed to solve the path planning problem.Gravitational Searc...Path planning of Uninhabited Aerial Vehicle(UAV) is a complicated global optimum problem.In the paper,an improved Gravitational Search Algorithm(GSA) was proposed to solve the path planning problem.Gravitational Search Algorithm(GSA) is a newly presented under the inspiration of the Newtonian gravity,and it is easy to fall local best.On the basis of introducing the idea of memory and social information of Particle Swarm Optimization(PSO),a novel moving strategy in the searching space was designed,which can improve the quality of the optimal solution.Subsequently,a weighted value was assigned to inertia mass of every agent in each iteration process to accelerate the convergence speed of the search.Particle position was updated according to the selection rules of survival of the fittest.In this way,the population is always moving in the direction of the optimal solution.The feasibility and effectiveness of our improved GSA approach was verified by comparative experimental results with PSO,basic GSA and two other GSA models.展开更多
文摘This paper proposes a simple low cost SIR (sustainability index for roads) that can be easily implemented by any local government that has a flexible pavement road network. The SIR includes the three pillars of sustainability, economic, social and environmental. The economic pillar is development from a new perspective of pavement deterioration from the Snowy Mountains Engineering Corporation's Pavement Management System. The new perspective is easily seen when the deterioration is plotted in three dimensions. This new exponential curve provides an equation for the return on investment in a road network, in terms of a future pavement condition index versus the annual rehabilitation budget. The environmental pillar will be developed by determining which road rehabilitation treatments cause the most environmental damage and recreating the new curve with these treatments being incrementally removed. The resulting curves will provide the annual cost of minimizing environmental damage and the loss of pavement condition index for minimizing environmental damage. The social pillar is, consultation with the community on what pavement condition index they are willing to fund, that is, balancing annual cost, environmental damage and desired pavement condition. This more efficient reporting conforms with the USA Government Accounting Standards Board requirements but not necessarily with the International Financial Reporting Standards. This new SIR reduces the current financial reporting requirement for local govemments in Queensland, Australia and can greatly improve comparability of financial reporting, where local governments calibrate the pavement deterioration factors in their Pavement Management Systems and use the newly developed regional rulebase.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60975072,60604009)the Program for New Century Excellent Talents in University of China (Grant No. NCET-10-0021)+1 种基金the Aeronautical Foundation of China (Grant No. 20115151019)the Fundamental Research Funds for the Central Universities of China
文摘Path planning of Uninhabited Aerial Vehicle(UAV) is a complicated global optimum problem.In the paper,an improved Gravitational Search Algorithm(GSA) was proposed to solve the path planning problem.Gravitational Search Algorithm(GSA) is a newly presented under the inspiration of the Newtonian gravity,and it is easy to fall local best.On the basis of introducing the idea of memory and social information of Particle Swarm Optimization(PSO),a novel moving strategy in the searching space was designed,which can improve the quality of the optimal solution.Subsequently,a weighted value was assigned to inertia mass of every agent in each iteration process to accelerate the convergence speed of the search.Particle position was updated according to the selection rules of survival of the fittest.In this way,the population is always moving in the direction of the optimal solution.The feasibility and effectiveness of our improved GSA approach was verified by comparative experimental results with PSO,basic GSA and two other GSA models.