The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred s...The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.展开更多
Surface tension of fluids is crucial for multiphase systems and is often controlled during industrial processes by introducing surfactants. In this study, effect of various microwave radiation modes on surface tension...Surface tension of fluids is crucial for multiphase systems and is often controlled during industrial processes by introducing surfactants. In this study, effect of various microwave radiation modes on surface tension of water was investigated as an alternative physical method to manipulate the surface tension without using chemicals. It is found that surface tension decreased quickly while temperature increased during microwave. Once the radiation was turned off, the temperature returned rapidly as expected. However, surface tension did not recover so much. The minimum surface tension after microwave radiation depended on the power. Moreover, a second radiation can have additional reduction on surface tension.展开更多
基金Project(KKSY201503006)supported by Scientific Research Foundation of Kunming University of Science and Technology,ChinaProject(2014FD009)supported by the Applied Basic Research Foundation(Youth Program)of ChinaProject(51090385)supported by the National Natural Science Foundation of China
文摘The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.
文摘Surface tension of fluids is crucial for multiphase systems and is often controlled during industrial processes by introducing surfactants. In this study, effect of various microwave radiation modes on surface tension of water was investigated as an alternative physical method to manipulate the surface tension without using chemicals. It is found that surface tension decreased quickly while temperature increased during microwave. Once the radiation was turned off, the temperature returned rapidly as expected. However, surface tension did not recover so much. The minimum surface tension after microwave radiation depended on the power. Moreover, a second radiation can have additional reduction on surface tension.