In this study, three hymexazol-linked chitosan derivatives (HML-CS) were synthesized and their structures confirmed by Fourier transform infrared and elemental analysis. Linkage ratios were measured by high performa...In this study, three hymexazol-linked chitosan derivatives (HML-CS) were synthesized and their structures confirmed by Fourier transform infrared and elemental analysis. Linkage ratios were measured by high performance liquid chromatography. The derivatives' antifungal activity against the plant pathogenic fimgi Rhizoctonia solani CGMCC 3.28 and Gibberella zeae CGMCC 3.42 were investigated at concentrations of 100, 200, and 400 mg/L. These HML-CS derivatives exhibited stronger antifungal activity than CS alone. HML-CS-1 showed the best antifizngal activity against G. zeae, whose antifimgal index was 65.9% at 400 mg/L, and also showed the best antifungal activity against R. solani, whose antifimgal index was 52.7% at 400 mg/L. This conjugation of CS and HML suggested the presence of synergistic effects between the moieties and indicated that these derivatives possessed great potential as novel fungicides and require further research for the development of applications in crop protection.展开更多
Pesticides will be released into aquatic systems after application in agriculture or industry. AOPPs (aryloxyphenoxypropanoic acids) herbicides, including fenoxaprop, quizalofop-P-ethyl and haloxyfop-methyl, can pos...Pesticides will be released into aquatic systems after application in agriculture or industry. AOPPs (aryloxyphenoxypropanoic acids) herbicides, including fenoxaprop, quizalofop-P-ethyl and haloxyfop-methyl, can pose aquatic toxicity on cyanobacterium M. aeruginosa (Microcystis aeruginosa). The inhibition percentages of the biomass of M. aeruginosa exposure to 10 mg'L-I fenoxaprop, quizalofop-P-ethyl and haloxyfop-methyl on day 7 were 23.13%, 7.55%, and 7.56%, respectively. Protein content was also inhibited by the three AOPPs to fenoxaprop is the most toxic, followed by quizalofop-P-ethyl varying degrees. The growth and protein content results showed that and haloxyfop-methyl. It indicates that both the biomass and the protein content can be served as an indicator for evaluating the toxicity of the three chemicals. Growth rates of M. aeruginosa exposure to fenoxaprop are also the most significantly different compared to the control, which means that fenoxaprop is the most toxic among the three compounds. Results from this study may provide insights for evaluation of environmental risks of AOPPs. In addition, such insights will be helpful for guiding the application of AOPPs in agriculture.展开更多
基金Supported by the National Natural Science Foundation of China(No.41306071)the Public Science and Technology Research Funds Projects of Ocean(No.201305016-2)the Science and Technology Development Program of Shandong Province(No.2012GHY11530)
文摘In this study, three hymexazol-linked chitosan derivatives (HML-CS) were synthesized and their structures confirmed by Fourier transform infrared and elemental analysis. Linkage ratios were measured by high performance liquid chromatography. The derivatives' antifungal activity against the plant pathogenic fimgi Rhizoctonia solani CGMCC 3.28 and Gibberella zeae CGMCC 3.42 were investigated at concentrations of 100, 200, and 400 mg/L. These HML-CS derivatives exhibited stronger antifungal activity than CS alone. HML-CS-1 showed the best antifizngal activity against G. zeae, whose antifimgal index was 65.9% at 400 mg/L, and also showed the best antifungal activity against R. solani, whose antifimgal index was 52.7% at 400 mg/L. This conjugation of CS and HML suggested the presence of synergistic effects between the moieties and indicated that these derivatives possessed great potential as novel fungicides and require further research for the development of applications in crop protection.
基金This work was supported by the National Natural Science Foundation of China (21307082, 20977062), the project of Science and Technology Commission of Shanghai Municipality, China (11ZR1421700) Innovation Program of Shanghai Municipal Education Commission (13YZ116) and the central finance to support the development of special local colleges and universities (city safety engineering).
文摘Pesticides will be released into aquatic systems after application in agriculture or industry. AOPPs (aryloxyphenoxypropanoic acids) herbicides, including fenoxaprop, quizalofop-P-ethyl and haloxyfop-methyl, can pose aquatic toxicity on cyanobacterium M. aeruginosa (Microcystis aeruginosa). The inhibition percentages of the biomass of M. aeruginosa exposure to 10 mg'L-I fenoxaprop, quizalofop-P-ethyl and haloxyfop-methyl on day 7 were 23.13%, 7.55%, and 7.56%, respectively. Protein content was also inhibited by the three AOPPs to fenoxaprop is the most toxic, followed by quizalofop-P-ethyl varying degrees. The growth and protein content results showed that and haloxyfop-methyl. It indicates that both the biomass and the protein content can be served as an indicator for evaluating the toxicity of the three chemicals. Growth rates of M. aeruginosa exposure to fenoxaprop are also the most significantly different compared to the control, which means that fenoxaprop is the most toxic among the three compounds. Results from this study may provide insights for evaluation of environmental risks of AOPPs. In addition, such insights will be helpful for guiding the application of AOPPs in agriculture.