Background,aim,and scope In the context of climate change,extreme precipitation and resulting f looding events are becoming increasingly severe.Remote sensing technologies are advantageous for monitoring such disaster...Background,aim,and scope In the context of climate change,extreme precipitation and resulting f looding events are becoming increasingly severe.Remote sensing technologies are advantageous for monitoring such disasters due to their wide observation range,periodic revisit capabilities,and continuous spatial coverage.These tools enable real-time and quantitative assessment of f lood inundation.Over the past 20 years,the field of remote sensing for f loods has seen significant advancements.Understanding the evolution of research hotspots within this field can offer valuable insights for future research directions.Materials and methods This study systematically analyzes the development and hotspot evolution in the field of f lood remote sensing,both domestically and internationally during 2000—2021.Data from CNKI(China National Knowledge Infrastructure)and WOS(Web of Science)databases are utilized for this analysis.Results(1)A total of 1693 articles have been published in this field,showing a stable growth trend post-2008.Significant contributors include the Chinese Academy of Sciences,Beijing Normal University,Wuhan University,the Italian National Research Council,and National Aeronautics and Space Administration.(2)High-frequency keywords from 2000 to 2021 include“remote sensing”“f lood”“model”“classification”“GIS”“climate change”“area”,and“MODIS”.(3)The most prominent keywords were“GIS”(8.65),“surface water”(7.16),“remote sensing”(7.07),“machine learning”(6.52),and“sentinel-2”(5.86).(4)Thirteen cluster labels were identified through clustering,divided into three phases:2000—2009(initial exploratory stage),2010—2014(period of rapid development),and 2015—2021(steady development of remote sensing for f loods and related disasters).Discussion The field exhibits strong phase-based development,with research focuses shifting over time.From 2000 to 2009,emphasis was on remote sensing image application and f lood model development.From 2010 to 2014,the focus shifted to accurate interpretation of remote sensing images,multispectral image applications,and long time series detection.From 2015 to 2021,research concentrated on steady development,leveraging large datasets and advanced data processing techniques,including improvements in water body indices,big data fusion,deep learning,and drone monitoring.Early on,SAR data,known for its all-weather capability,was crucial for rapid f lood hazard extraction and f lood hydrological models.With the rise of high-quality optical satellites,optical remote sensing has become more prevalent,though algorithm accuracy and efficiency for water body index methods still require improvement.Conclusions Data sources and methodologies have evolved from early reliance on radar data to the current exploration of optical image fusion and multi-source data integration.Algorithms now increasingly employ deep learning,super image elements,and object-oriented methods to enhance f lood identification accuracy.Recent studies focus on spatial and temporal changes in f looding,risk identification,and early warning for climate change-related f looding,including glacial melting and lake outbursts.Recommendations and perspectives To enhance monitoring accuracy and timeliness,UAV technology should be further utilized.Strengthening multi-source data fusion and assimilation is crucial,as is analyzing long-term f lood disaster sequences to better understand their mechanisms.展开更多
The use of low-frequency seismic data improves the seismic resolution, and the imaging and inversion quality. Furthermore, low-frequency data are applied in hydrocarbon exploration; thus, we need to better use low-fre...The use of low-frequency seismic data improves the seismic resolution, and the imaging and inversion quality. Furthermore, low-frequency data are applied in hydrocarbon exploration; thus, we need to better use low-frequency data. In seismic wavelets, the loss of low-frequency data decreases the main lobe amplitude and increases the first side lobe amplitude and results in the periodic shocking attenuation of the secondary side lobe. The loss of low frequencies likely produces pseudo-events and the false appearance of higher resolution. We use models to examine the removal of low-frequency data in seismic data processing. The results suggest that the removal of low frequencies create distortions, especially for steep structures and thin layers. We also perform low-frequency expansion using compressed sensing and sparse constraints and develop the corresponding module. Finally, we apply the proposed method to real common image point gathers with good results.展开更多
The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will s...The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will significantly degrade the convergence rate and tracking capability of the traditional estimation algorithms such as least squares (LS), while excluding the use of the delay-Doppler spread function due to huge computational complexity. By constructing a Toeplitz matrix with a training sequence as the measurement matrix, the estimation problem of long sparse acoustic channels is formulated into a compressed sensing problem to facilitate the efficient exploitation of sparsity. Furthermore, unlike the traditional l1 norm or exponent-based approximation l0 norm sparse recovery strategy, a novel variant of approximate l0 norm called AL0 is proposed, minimization of which leads to the derivation of a hybrid approach by iteratively projecting the steepest descent solution to the feasible set. Numerical simulations as well as sea trial experiments are compared and analyzed to demonstrate the superior performance of the proposed algorithm.展开更多
As same as the conventional inverse synthetic aperture radar(ISAR), the compressed ISAR also requires the echo signal based motion compensation, which consists of the range alignment and the phase autofoeusing. A ph...As same as the conventional inverse synthetic aperture radar(ISAR), the compressed ISAR also requires the echo signal based motion compensation, which consists of the range alignment and the phase autofoeusing. A phase autofocusing algorithm for compressed ISAR imaging is presented. In the algorithm, phase autofocusing for the sparse ISAR echoes is accomplished using the eigenvector method. Experimental results validate the effectiveness of the algorithm.展开更多
[Objective] The aim was to explore the tourist destination image measurement method, and have an empirical study on Xi'an City. [Method] With combination of non-structural and structured approach to design questionna...[Objective] The aim was to explore the tourist destination image measurement method, and have an empirical study on Xi'an City. [Method] With combination of non-structural and structured approach to design questionnaires, tourism image of Xi'an was explored using the SPSS software from both the qualitative and quantitative analyses. [Result] Xi'an tourism images serve a heritage historical monuments atmosphere with the Terracotta Warriors, City Wall, Big Wild Goose Pagoda,Huaqing Hot Springs, presenting a positive feeling among tourists in general. In the dissemination of travel, tourism infrastructure construction, tourism transportation,travel services have negative effects on the image of Xi'an tourism. [Conclusion]The evaluation on the tourism resources is highly spoken of by tourists than the scenic spot, indicating that despite high visibility of tourism resources in Xi'an, it has not formed strong core competitiveness and a complete tourism industrial chain. It is necessary to take the right marketing strategies to enhance tourist familiarity to Xi'an. Tourists demands, therefore, should be well considered in developing Xi'an scenic spots and new tourism products and projects be focused on to improve tourists' satisfaction.展开更多
In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. ...In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. By the learning ability of the NN and the closely approximate unknown function to any degree of desired accuracy,the input-output mapping relationship between coordinates and the measurement data of time of arrival (TOA) and time difference of arrival (TDOA) is established. A real-time learning algorithm based on the extended Kalman filter (EKF) is used to train the multilayer perceptron (MLP) network by treating the linkweights of a network as the states of the nonlinear dynamic system. Since the EKF-based learning algorithm approximately gives the minimum variance estimate of the linkweights,the convergence is improved in comparison with the backwards error propagation (BP) algorithm. Numerical results illustrate thatthe proposedalgorithmcanachieve enhanced accuracy,and the performance ofthe algorithmis betterthanthat of the BP-based NN algorithm and the least squares (LS) algorithm in the NLOS environments. Moreover,this location method does not depend on a particular distribution of the NLOS error and does not need line-of-sight ( LOS ) or NLOS identification.展开更多
In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the Eur...In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the European Telecommunication Standards Institute(ETSI) digital radio mondiale (DRM) standard, the subspace pursuit (SP) algorithm is employed for delay spread and attenuation estimation of each path in the case where the channel profile is identified and the multipath number is known. The stop condition for SP is that the sparsity of the estimation equals the multipath number. For the case where the multipath number is unknown, the orthogonal matching pursuit (OMP) algorithm is employed for channel estimation, while the stop condition is that the estimation achieves the noise variance. Simulation results show that with the same number of pilots, CS algorithms outperform the traditional cubic-spline-interpolation-based least squares (LS) channel estimation. SP is also demonstrated to be better than OMP when the multipath number is known as a priori.展开更多
Face hallucination or super-resolution is an inverse problem which is underdetermined,and the compressive sensing(CS)theory provides an effective way of seeking inverse problem solutions.In this paper,a novel compress...Face hallucination or super-resolution is an inverse problem which is underdetermined,and the compressive sensing(CS)theory provides an effective way of seeking inverse problem solutions.In this paper,a novel compressive sensing based face hallucination method is presented,which is comprised of three steps:dictionary learning、sparse coding and solving maximum a posteriori(MAP)formulation.In the first step,the K-SVD dictionary learning algorithm is adopted to obtain a dictionary which can sparsely represent high resolution(HR)face image patches.In the second step,we seek the sparsest representation for each low-resolution(LR)face image paches input using the learned dictionary,super resolution image blocks are obtained from the sparsest coefficients and dictionaries,which then are assembled into super-resolution(SR)image.Finally,MAP formulation is introduced to satisfy the consistency restrictive condition and obtain the higher quality HR images.The experimental results demonstrate that our approach can achieve better super-resolution faces compared with other state-of-the-art method.展开更多
To further explore the human visual system( HVS),the perceptual grouping( PG), which has been proven to play an important role in the HVS, is adopted to design an effective image quality assessment( IQA) model. ...To further explore the human visual system( HVS),the perceptual grouping( PG), which has been proven to play an important role in the HVS, is adopted to design an effective image quality assessment( IQA) model. Compared with the existing fixed-window-based models, the proposed one is an adaptive window-like model that introduces the perceptual grouping strategy into the IQA model. It works as follows: first,it preprocesses the images by clustering similar pixels into a group to the greatest extent; then the structural similarity is used to compute the similarity of the superpixels between reference and distorted images; finally, it integrates all the similarity of superpixels of an image to yield a quality score. Experimental results on three databases( LIVE, IVC and MICT) showthat the proposed method yields good performance in terms of correlation with human judgments of visual quality.展开更多
To solve the excessive huge scale problem of the traditional multi-bit digital artificial neural network(ANN) hardware implementation methods,a bit-stream ANN hardware implementation method based on sigma delta(Σ...To solve the excessive huge scale problem of the traditional multi-bit digital artificial neural network(ANN) hardware implementation methods,a bit-stream ANN hardware implementation method based on sigma delta(ΣΔ) modulation is presented.The bit-stream adder,multiplier,threshold function unit and fully digital ΣΔ modulator are implemented in a field programmable gate array(FPGA),and these bit-stream arithmetical units are employed to build the bit-stream artificial neuron.The function of the bit-stream artificial neuron is verified through the realization of the logic function and a linear classifier.The bit-stream perceptron based on the bit-stream artificial neuron with the pre-processed structure is proved to have the ability of nonlinear classification.The FPGA resource utilization of the bit-stream artificial neuron shows that the bit-stream ANN hardware implementation method can significantly reduce the demand of the ANN hardware resources.展开更多
A heuristic theoretical optimal routing algorithm (TORA) is presented to achieve the data-gathering structure of location-aided quality of service (QoS) in wireless sensor networks (WSNs). The construction of TO...A heuristic theoretical optimal routing algorithm (TORA) is presented to achieve the data-gathering structure of location-aided quality of service (QoS) in wireless sensor networks (WSNs). The construction of TORA is based on a kind of swarm intelligence (SI) mechanism, i. e. , ant colony optimization. Firstly, the ener- gy-efficient weight is designed based on flow distribution to divide WSNs into different functional regions, so the routing selection can self-adapt asymmetric power configurations with lower latency. Then, the designs of the novel heuristic factor and the pheromone updating rule can endow ant-like agents with the ability of detecting the local networks energy status and approaching the theoretical optimal tree, thus improving the adaptability and en- ergy-efficiency in route building. Simulation results show that compared with some classic routing algorithms, TORA can further minimize the total communication energy cost and enhance the QoS performance with low-de- lay effect under the data-gathering condition.展开更多
A novel dynamic software allocation algorithm suitable for pervasive computing environments is proposed to minimize power consumption of mobile devices. Considering the power cost incurred by the computation, communic...A novel dynamic software allocation algorithm suitable for pervasive computing environments is proposed to minimize power consumption of mobile devices. Considering the power cost incurred by the computation, communication and migration of software components, a power consumption model of component assignments between a mobile device and a server is set up. Also, the mobility of components and the mobility relationships between components are taken into account in software allocation. By using network flow theory, the optimization problem of power conservation is transformed into the optimal bipartition problem of a flow network which can be partitioned by the max-flow rain-cut algorithm. Simulation results show that the proposed algorithm can save si^nificantlv more energy than existing algorithms.展开更多
A channel assignment algorithm with awareness of link traffic is proposed in multi-radio multi-channel wireless mesh networks. First, the physical interference model based on the signal-to-interference-plus-noise rati...A channel assignment algorithm with awareness of link traffic is proposed in multi-radio multi-channel wireless mesh networks. First, the physical interference model based on the signal-to-interference-plus-noise ratio and successful transmission condition is described. The model is more suitable for a wireless communication environment than other existing models. Secondly, a pure integer quadratic programming (PIQP) model is used to solve the channel assignment problem and improve the capacity of wireless mesh networks. Consequently, a traffic- aware static channel assignment algorithm(TASC) is designed. The algorithm adopts some network parameters, including the network connectivity, the limitation of the number of radios and the successful transmission conditions in wireless communications. The TASC algorithm can diminish network interference and increase the efficiency of channel assignment while keeping the connectivity of the network. Finally, the feasibility and effectivity of the channel assignment solution are illustrated by the simulation results. Compared witb similar algorithms, the proposed algorithm can increase the capacity of WMNs.展开更多
The cognitive performance-based dimensional emotion recognition in whispered speech is studied.First,the whispered speech emotion databases and data collection methods are compared, and the character of emotion expres...The cognitive performance-based dimensional emotion recognition in whispered speech is studied.First,the whispered speech emotion databases and data collection methods are compared, and the character of emotion expression in whispered speech is studied,especially the basic types of emotions.Secondly,the emotion features for whispered speech is analyzed,and by reviewing the latest references,the related valence features and the arousal features are provided. The effectiveness of valence and arousal features in whispered speech emotion classification is studied.Finally,the Gaussian mixture model is studied and applied to whispered speech emotion recognition. The cognitive performance is also considered in emotion recognition so that the recognition errors of whispered speech emotion can be corrected.Based on the cognitive scores,the emotion recognition results can be improved.The results show that the formant features are not significantly related to arousal dimension,while the short-term energy features are related to the emotion changes in arousal dimension.Using the cognitive scores,the recognition results can be improved.展开更多
This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that th...This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs.展开更多
In seismic prospecting, fi eld conditions and other factors hamper the recording of the complete seismic wavefi eld; thus, data interpolation is critical in seismic data processing. Especially, in complex conditions, ...In seismic prospecting, fi eld conditions and other factors hamper the recording of the complete seismic wavefi eld; thus, data interpolation is critical in seismic data processing. Especially, in complex conditions, prestack missing data affect the subsequent highprecision data processing workfl ow. Compressive sensing is an effective strategy for seismic data interpolation by optimally representing the complex seismic wavefi eld and using fast and accurate iterative algorithms. The seislet transform is a sparse multiscale transform well suited for representing the seismic wavefield, as it can effectively compress seismic events. Furthermore, the Bregman iterative algorithm is an efficient algorithm for sparse representation in compressive sensing. Seismic data interpolation methods can be developed by combining seismic dynamic prediction, image transform, and compressive sensing. In this study, we link seismic data interpolation and constrained optimization. We selected the OC-seislet sparse transform to represent complex wavefields and used the Bregman iteration method to solve the hybrid norm inverse problem under the compressed sensing framework. In addition, we used an H-curve method to choose the threshold parameter in the Bregman iteration method. Thus, we achieved fast and accurate reconstruction of the seismic wavefi eld. Model and fi eld data tests demonstrate that the Bregman iteration method based on the H-curve norm in the sparse transform domain can effectively reconstruct missing complex wavefi eld data.展开更多
To improve the reconstruction performance of the greedy algorithm for sparse signals, an improved greedy algorithm, called sparsity estimation variable step-size matching pursuit, is proposed. Compared with state-of-t...To improve the reconstruction performance of the greedy algorithm for sparse signals, an improved greedy algorithm, called sparsity estimation variable step-size matching pursuit, is proposed. Compared with state-of-the-art greedy algorithms, the proposed algorithm incorporates the restricted isometry property and variable step-size, which is utilized for sparsity estimation and reduces the reconstruction time, respectively. Based on the sparsity estimation, the initial value including sparsity level and support set is computed at the beginning of the reconstruction, which provides preliminary sparsity information for signal reconstruction. Then, the residual and correlation are calculated according to the initial value and the support set is refined at the next iteration associated with variable step-size and backtracking. Finally, the correct support set is obtained when the halting condition is reached and the original signal is reconstructed accurately. The simulation results demonstrate that the proposed algorithm improves the recovery performance and considerably outperforms the existing algorithm in terms of the running time in sparse signal reconstruction.展开更多
文摘Background,aim,and scope In the context of climate change,extreme precipitation and resulting f looding events are becoming increasingly severe.Remote sensing technologies are advantageous for monitoring such disasters due to their wide observation range,periodic revisit capabilities,and continuous spatial coverage.These tools enable real-time and quantitative assessment of f lood inundation.Over the past 20 years,the field of remote sensing for f loods has seen significant advancements.Understanding the evolution of research hotspots within this field can offer valuable insights for future research directions.Materials and methods This study systematically analyzes the development and hotspot evolution in the field of f lood remote sensing,both domestically and internationally during 2000—2021.Data from CNKI(China National Knowledge Infrastructure)and WOS(Web of Science)databases are utilized for this analysis.Results(1)A total of 1693 articles have been published in this field,showing a stable growth trend post-2008.Significant contributors include the Chinese Academy of Sciences,Beijing Normal University,Wuhan University,the Italian National Research Council,and National Aeronautics and Space Administration.(2)High-frequency keywords from 2000 to 2021 include“remote sensing”“f lood”“model”“classification”“GIS”“climate change”“area”,and“MODIS”.(3)The most prominent keywords were“GIS”(8.65),“surface water”(7.16),“remote sensing”(7.07),“machine learning”(6.52),and“sentinel-2”(5.86).(4)Thirteen cluster labels were identified through clustering,divided into three phases:2000—2009(initial exploratory stage),2010—2014(period of rapid development),and 2015—2021(steady development of remote sensing for f loods and related disasters).Discussion The field exhibits strong phase-based development,with research focuses shifting over time.From 2000 to 2009,emphasis was on remote sensing image application and f lood model development.From 2010 to 2014,the focus shifted to accurate interpretation of remote sensing images,multispectral image applications,and long time series detection.From 2015 to 2021,research concentrated on steady development,leveraging large datasets and advanced data processing techniques,including improvements in water body indices,big data fusion,deep learning,and drone monitoring.Early on,SAR data,known for its all-weather capability,was crucial for rapid f lood hazard extraction and f lood hydrological models.With the rise of high-quality optical satellites,optical remote sensing has become more prevalent,though algorithm accuracy and efficiency for water body index methods still require improvement.Conclusions Data sources and methodologies have evolved from early reliance on radar data to the current exploration of optical image fusion and multi-source data integration.Algorithms now increasingly employ deep learning,super image elements,and object-oriented methods to enhance f lood identification accuracy.Recent studies focus on spatial and temporal changes in f looding,risk identification,and early warning for climate change-related f looding,including glacial melting and lake outbursts.Recommendations and perspectives To enhance monitoring accuracy and timeliness,UAV technology should be further utilized.Strengthening multi-source data fusion and assimilation is crucial,as is analyzing long-term f lood disaster sequences to better understand their mechanisms.
基金supported by the National Science and Technology Major Project(No.2011ZX05051)Science and Technology Project of Shengli Oilfi eld(No.YKW1301)
文摘The use of low-frequency seismic data improves the seismic resolution, and the imaging and inversion quality. Furthermore, low-frequency data are applied in hydrocarbon exploration; thus, we need to better use low-frequency data. In seismic wavelets, the loss of low-frequency data decreases the main lobe amplitude and increases the first side lobe amplitude and results in the periodic shocking attenuation of the secondary side lobe. The loss of low frequencies likely produces pseudo-events and the false appearance of higher resolution. We use models to examine the removal of low-frequency data in seismic data processing. The results suggest that the removal of low frequencies create distortions, especially for steep structures and thin layers. We also perform low-frequency expansion using compressed sensing and sparse constraints and develop the corresponding module. Finally, we apply the proposed method to real common image point gathers with good results.
基金The National Natural Science Foundation of China(No.11274259)the Open Project Program of the Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education(No.UASP1305)
文摘The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will significantly degrade the convergence rate and tracking capability of the traditional estimation algorithms such as least squares (LS), while excluding the use of the delay-Doppler spread function due to huge computational complexity. By constructing a Toeplitz matrix with a training sequence as the measurement matrix, the estimation problem of long sparse acoustic channels is formulated into a compressed sensing problem to facilitate the efficient exploitation of sparsity. Furthermore, unlike the traditional l1 norm or exponent-based approximation l0 norm sparse recovery strategy, a novel variant of approximate l0 norm called AL0 is proposed, minimization of which leads to the derivation of a hybrid approach by iteratively projecting the steepest descent solution to the feasible set. Numerical simulations as well as sea trial experiments are compared and analyzed to demonstrate the superior performance of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China(61071165)the Program for NewCentury Excellent Talents in University(NCET-09-0069)the Defense Industrial Technology Development Program(B2520110008)~~
文摘As same as the conventional inverse synthetic aperture radar(ISAR), the compressed ISAR also requires the echo signal based motion compensation, which consists of the range alignment and the phase autofoeusing. A phase autofocusing algorithm for compressed ISAR imaging is presented. In the algorithm, phase autofocusing for the sparse ISAR echoes is accomplished using the eigenvector method. Experimental results validate the effectiveness of the algorithm.
基金Supported by National Social and Science Foundation of China(13XSH017)Humanities and Social Sciences Research Foundation of the Ministry of Education(10YJAZH041)Social Science Foundation of Shaanxi(12D271)~~
文摘[Objective] The aim was to explore the tourist destination image measurement method, and have an empirical study on Xi'an City. [Method] With combination of non-structural and structured approach to design questionnaires, tourism image of Xi'an was explored using the SPSS software from both the qualitative and quantitative analyses. [Result] Xi'an tourism images serve a heritage historical monuments atmosphere with the Terracotta Warriors, City Wall, Big Wild Goose Pagoda,Huaqing Hot Springs, presenting a positive feeling among tourists in general. In the dissemination of travel, tourism infrastructure construction, tourism transportation,travel services have negative effects on the image of Xi'an tourism. [Conclusion]The evaluation on the tourism resources is highly spoken of by tourists than the scenic spot, indicating that despite high visibility of tourism resources in Xi'an, it has not formed strong core competitiveness and a complete tourism industrial chain. It is necessary to take the right marketing strategies to enhance tourist familiarity to Xi'an. Tourists demands, therefore, should be well considered in developing Xi'an scenic spots and new tourism products and projects be focused on to improve tourists' satisfaction.
基金The National High Technology Research and Development Program of China (863 Program) (No.2008AA01Z227)the Cultivatable Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China (No.706028)
文摘In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. By the learning ability of the NN and the closely approximate unknown function to any degree of desired accuracy,the input-output mapping relationship between coordinates and the measurement data of time of arrival (TOA) and time difference of arrival (TDOA) is established. A real-time learning algorithm based on the extended Kalman filter (EKF) is used to train the multilayer perceptron (MLP) network by treating the linkweights of a network as the states of the nonlinear dynamic system. Since the EKF-based learning algorithm approximately gives the minimum variance estimate of the linkweights,the convergence is improved in comparison with the backwards error propagation (BP) algorithm. Numerical results illustrate thatthe proposedalgorithmcanachieve enhanced accuracy,and the performance ofthe algorithmis betterthanthat of the BP-based NN algorithm and the least squares (LS) algorithm in the NLOS environments. Moreover,this location method does not depend on a particular distribution of the NLOS error and does not need line-of-sight ( LOS ) or NLOS identification.
基金The National Natural Science Foundation of China (No.60872075)the National High Technology Research and Development Program of China (863 Program) (No.2008AA01Z227)
文摘In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the European Telecommunication Standards Institute(ETSI) digital radio mondiale (DRM) standard, the subspace pursuit (SP) algorithm is employed for delay spread and attenuation estimation of each path in the case where the channel profile is identified and the multipath number is known. The stop condition for SP is that the sparsity of the estimation equals the multipath number. For the case where the multipath number is unknown, the orthogonal matching pursuit (OMP) algorithm is employed for channel estimation, while the stop condition is that the estimation achieves the noise variance. Simulation results show that with the same number of pilots, CS algorithms outperform the traditional cubic-spline-interpolation-based least squares (LS) channel estimation. SP is also demonstrated to be better than OMP when the multipath number is known as a priori.
文摘Face hallucination or super-resolution is an inverse problem which is underdetermined,and the compressive sensing(CS)theory provides an effective way of seeking inverse problem solutions.In this paper,a novel compressive sensing based face hallucination method is presented,which is comprised of three steps:dictionary learning、sparse coding and solving maximum a posteriori(MAP)formulation.In the first step,the K-SVD dictionary learning algorithm is adopted to obtain a dictionary which can sparsely represent high resolution(HR)face image patches.In the second step,we seek the sparsest representation for each low-resolution(LR)face image paches input using the learned dictionary,super resolution image blocks are obtained from the sparsest coefficients and dictionaries,which then are assembled into super-resolution(SR)image.Finally,MAP formulation is introduced to satisfy the consistency restrictive condition and obtain the higher quality HR images.The experimental results demonstrate that our approach can achieve better super-resolution faces compared with other state-of-the-art method.
基金The National Natural Science Foundation of China(No.81272501)the National Basic Research Program of China(973Program)(No.2011CB707904)Taishan Scholars Program of Shandong Province,China(No.ts20120505)
文摘To further explore the human visual system( HVS),the perceptual grouping( PG), which has been proven to play an important role in the HVS, is adopted to design an effective image quality assessment( IQA) model. Compared with the existing fixed-window-based models, the proposed one is an adaptive window-like model that introduces the perceptual grouping strategy into the IQA model. It works as follows: first,it preprocesses the images by clustering similar pixels into a group to the greatest extent; then the structural similarity is used to compute the similarity of the superpixels between reference and distorted images; finally, it integrates all the similarity of superpixels of an image to yield a quality score. Experimental results on three databases( LIVE, IVC and MICT) showthat the proposed method yields good performance in terms of correlation with human judgments of visual quality.
基金The National Natural Science Foundation of China (No.60576028)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.11KJB510004)
文摘To solve the excessive huge scale problem of the traditional multi-bit digital artificial neural network(ANN) hardware implementation methods,a bit-stream ANN hardware implementation method based on sigma delta(ΣΔ) modulation is presented.The bit-stream adder,multiplier,threshold function unit and fully digital ΣΔ modulator are implemented in a field programmable gate array(FPGA),and these bit-stream arithmetical units are employed to build the bit-stream artificial neuron.The function of the bit-stream artificial neuron is verified through the realization of the logic function and a linear classifier.The bit-stream perceptron based on the bit-stream artificial neuron with the pre-processed structure is proved to have the ability of nonlinear classification.The FPGA resource utilization of the bit-stream artificial neuron shows that the bit-stream ANN hardware implementation method can significantly reduce the demand of the ANN hardware resources.
基金Supported by the Foundation of National Natural Science of China(60802005,50803016)the Science Foundation for the Excellent Youth Scholars in East China University of Science and Technology(YH0157127)the Undergraduate Innovational Experimentation Program in East China University of Science andTechnology(X1033)~~
文摘A heuristic theoretical optimal routing algorithm (TORA) is presented to achieve the data-gathering structure of location-aided quality of service (QoS) in wireless sensor networks (WSNs). The construction of TORA is based on a kind of swarm intelligence (SI) mechanism, i. e. , ant colony optimization. Firstly, the ener- gy-efficient weight is designed based on flow distribution to divide WSNs into different functional regions, so the routing selection can self-adapt asymmetric power configurations with lower latency. Then, the designs of the novel heuristic factor and the pheromone updating rule can endow ant-like agents with the ability of detecting the local networks energy status and approaching the theoretical optimal tree, thus improving the adaptability and en- ergy-efficiency in route building. Simulation results show that compared with some classic routing algorithms, TORA can further minimize the total communication energy cost and enhance the QoS performance with low-de- lay effect under the data-gathering condition.
基金The National Natural Science Foundation of China(No60503041)the Science and Technology Commission of ShanghaiInternational Cooperation Project (No05SN07114)
文摘A novel dynamic software allocation algorithm suitable for pervasive computing environments is proposed to minimize power consumption of mobile devices. Considering the power cost incurred by the computation, communication and migration of software components, a power consumption model of component assignments between a mobile device and a server is set up. Also, the mobility of components and the mobility relationships between components are taken into account in software allocation. By using network flow theory, the optimization problem of power conservation is transformed into the optimal bipartition problem of a flow network which can be partitioned by the max-flow rain-cut algorithm. Simulation results show that the proposed algorithm can save si^nificantlv more energy than existing algorithms.
基金The National Basic Research Program of China(973Program)(No.2009CB320501)the Natural Science Foundation of Jiangsu Province(No.BK2010414)+1 种基金China Postdoctoral Science Foundation(No.20100480071)Specialized Research Fund for the Doctoral Program of Higher Education(No.20090092120029)
文摘A channel assignment algorithm with awareness of link traffic is proposed in multi-radio multi-channel wireless mesh networks. First, the physical interference model based on the signal-to-interference-plus-noise ratio and successful transmission condition is described. The model is more suitable for a wireless communication environment than other existing models. Secondly, a pure integer quadratic programming (PIQP) model is used to solve the channel assignment problem and improve the capacity of wireless mesh networks. Consequently, a traffic- aware static channel assignment algorithm(TASC) is designed. The algorithm adopts some network parameters, including the network connectivity, the limitation of the number of radios and the successful transmission conditions in wireless communications. The TASC algorithm can diminish network interference and increase the efficiency of channel assignment while keeping the connectivity of the network. Finally, the feasibility and effectivity of the channel assignment solution are illustrated by the simulation results. Compared witb similar algorithms, the proposed algorithm can increase the capacity of WMNs.
基金The National Natural Science Foundation of China(No.11401412)
文摘The cognitive performance-based dimensional emotion recognition in whispered speech is studied.First,the whispered speech emotion databases and data collection methods are compared, and the character of emotion expression in whispered speech is studied,especially the basic types of emotions.Secondly,the emotion features for whispered speech is analyzed,and by reviewing the latest references,the related valence features and the arousal features are provided. The effectiveness of valence and arousal features in whispered speech emotion classification is studied.Finally,the Gaussian mixture model is studied and applied to whispered speech emotion recognition. The cognitive performance is also considered in emotion recognition so that the recognition errors of whispered speech emotion can be corrected.Based on the cognitive scores,the emotion recognition results can be improved.The results show that the formant features are not significantly related to arousal dimension,while the short-term energy features are related to the emotion changes in arousal dimension.Using the cognitive scores,the recognition results can be improved.
文摘This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs.
基金supported by the National Natural Science Foundation of China(Nos.41274119,41174080,and 41004041)the 863 Program of China(No.2012AA09A20103)
文摘In seismic prospecting, fi eld conditions and other factors hamper the recording of the complete seismic wavefi eld; thus, data interpolation is critical in seismic data processing. Especially, in complex conditions, prestack missing data affect the subsequent highprecision data processing workfl ow. Compressive sensing is an effective strategy for seismic data interpolation by optimally representing the complex seismic wavefi eld and using fast and accurate iterative algorithms. The seislet transform is a sparse multiscale transform well suited for representing the seismic wavefield, as it can effectively compress seismic events. Furthermore, the Bregman iterative algorithm is an efficient algorithm for sparse representation in compressive sensing. Seismic data interpolation methods can be developed by combining seismic dynamic prediction, image transform, and compressive sensing. In this study, we link seismic data interpolation and constrained optimization. We selected the OC-seislet sparse transform to represent complex wavefields and used the Bregman iteration method to solve the hybrid norm inverse problem under the compressed sensing framework. In addition, we used an H-curve method to choose the threshold parameter in the Bregman iteration method. Thus, we achieved fast and accurate reconstruction of the seismic wavefi eld. Model and fi eld data tests demonstrate that the Bregman iteration method based on the H-curve norm in the sparse transform domain can effectively reconstruct missing complex wavefi eld data.
基金The National Basic Research Program of China(973Program)(No.2013CB329003)
文摘To improve the reconstruction performance of the greedy algorithm for sparse signals, an improved greedy algorithm, called sparsity estimation variable step-size matching pursuit, is proposed. Compared with state-of-the-art greedy algorithms, the proposed algorithm incorporates the restricted isometry property and variable step-size, which is utilized for sparsity estimation and reduces the reconstruction time, respectively. Based on the sparsity estimation, the initial value including sparsity level and support set is computed at the beginning of the reconstruction, which provides preliminary sparsity information for signal reconstruction. Then, the residual and correlation are calculated according to the initial value and the support set is refined at the next iteration associated with variable step-size and backtracking. Finally, the correct support set is obtained when the halting condition is reached and the original signal is reconstructed accurately. The simulation results demonstrate that the proposed algorithm improves the recovery performance and considerably outperforms the existing algorithm in terms of the running time in sparse signal reconstruction.