We examine the traffic lights regime to enable the fastest overall approach to a city for a specific case. The case involves a traffic light where one continues on the main road, into which additional cars are enterin...We examine the traffic lights regime to enable the fastest overall approach to a city for a specific case. The case involves a traffic light where one continues on the main road, into which additional cars are entering at the light. At this intersection an alternative route begins, which is longer but into which no additional cars are entering. To keep the total number of vehicles constant, we subtract on the main road far from the intersection, the same number of cars as were added at the intersection. In addition to checking different densities we check also the influence of changes in the number of cars which were added. We calculate the Fourier transform of the average on each traffic light cycles of the velocity on the main road and bypass. We obtained different results for different cases. All the cases can be written as 1/fa .展开更多
We examine the possibility of using alternative roads when confronted with traffic congestion. One is the main road; the second alternative is through a secondary road into which additional cars are coming. To keep th...We examine the possibility of using alternative roads when confronted with traffic congestion. One is the main road; the second alternative is through a secondary road into which additional cars are coming. To keep the total number of vehicles constant, we subtract on the main road the same number of cars as where added to the bypass. We check the Fourier transform of the average on each traffic light cycles of the velocity on the main road and bypass. In the jammed region we obtained different results for the main road and for the bypass. Whereas for the main road we obtained l/f, for the bypass we obtained "red noise", i.e., 1/f2.展开更多
Organic photovoltaic(OPV)cells have found their potential applications in the harvest of indoor light photons.However,the output power of such indoor devices is usually far from the demand of the internet of things.Th...Organic photovoltaic(OPV)cells have found their potential applications in the harvest of indoor light photons.However,the output power of such indoor devices is usually far from the demand of the internet of things.Therefore,it is essential to boost the output power of indoor organic photovoltaics to a much higher level.As wildly deployed among industrial and civil luminous environments,thermal radiation-based indoor light sources are alternative candidates to supply the essential power of the off-grid electronics with a broad consecutive emission spectrum.In this work,we evaluated the photovoltaic performance of organic solar cells under indoor incandescent and halogen illuminations.Impressively,under such thermal radiations,an improvement over 500%of the output power density can be achieved in comparison with that under light-emitting diodes and fluorescent lamps,reaching a record high value of 279.1 lWcm^(-2) by the PM6:Y6-based device.The remarkable power output is originated from the extra near-infrared spectrum of indoor thermal lights,which restricts the effective area under 10 cm^(2) in achieving 1 mW output power.This work clarifies the feasibility of collecting photons radiated from indoor thermal light sources through OPV cells,and enlightens the further applications of indoor OPV cells under multiple illumination environments.展开更多
Photoactive cocrystal materials have received growing research interest in construction of photofunctional systems owing to the crucial roles in modifying the photo-related properties of molecular solids, based on the...Photoactive cocrystal materials have received growing research interest in construction of photofunctional systems owing to the crucial roles in modifying the photo-related properties of molecular solids, based on the non-bonding interactions between self-assembly units. Herein, we report tunable luminescence and acid-base stimuli-responsive properties of a cocrystal assembled by 4-[2-(4-quinolinyl)vinyl]phenol (qv) and tetrafluoroterephthalic acid (a). The luminescent properties (such as wavelength, quantum yield and fluorescence lifetime) of qv.a changed obviously relative to the pristine qv, due to the proton transfer and the alternation of molecular arrangement within two-component crystalline material. The photoemission intensity of qv.a underwent from weak to strong upon HCl gas fuming, and the corresponding wavelength changed from 517 nm to 597 nm, which can be reversibly transferred after exposed in NH3. Such luminescent switching behavior may provide an effective way to develop new types of photoactive stimuli-responsive materials and optical sensors.展开更多
High pressure sodium (HPS) lamp has been widely used in street lighting applications because of its maturity, reliability, high lighting efficiency, long life-time, and low cost. Light emitting diode (LED) is expe...High pressure sodium (HPS) lamp has been widely used in street lighting applications because of its maturity, reliability, high lighting efficiency, long life-time, and low cost. Light emitting diode (LED) is expected as the next generation lighting source due to its continuously improving luminous efficacy, better color characteristic, and super long life-time. The two lighting sources may coexist in street lighting applications for a long time. A novel HPS and LED compatible driver is proposed which is rather suitable and flexible for driving HPS and LED in street lighting applications. The proposed driver combines the LLC and LCC resonant circuits into a flexible resonant tank. The flexible resonant tank may change to LLC or isolated LCC circuit according to the lighting source. It inherits the traditional HPS and LED drivers' zero voltage switching (ZVS) characteristics and dimmable function. The design of the proposed flexible resonant tank considers the requirements of both HPS and LED. The experiments of driving HPS and LED on a prototype driver show that the driver can drive the two lighting sources flexibly with high efficiency.展开更多
文摘We examine the traffic lights regime to enable the fastest overall approach to a city for a specific case. The case involves a traffic light where one continues on the main road, into which additional cars are entering at the light. At this intersection an alternative route begins, which is longer but into which no additional cars are entering. To keep the total number of vehicles constant, we subtract on the main road far from the intersection, the same number of cars as were added at the intersection. In addition to checking different densities we check also the influence of changes in the number of cars which were added. We calculate the Fourier transform of the average on each traffic light cycles of the velocity on the main road and bypass. We obtained different results for different cases. All the cases can be written as 1/fa .
文摘We examine the possibility of using alternative roads when confronted with traffic congestion. One is the main road; the second alternative is through a secondary road into which additional cars are coming. To keep the total number of vehicles constant, we subtract on the main road the same number of cars as where added to the bypass. We check the Fourier transform of the average on each traffic light cycles of the velocity on the main road and bypass. In the jammed region we obtained different results for the main road and for the bypass. Whereas for the main road we obtained l/f, for the bypass we obtained "red noise", i.e., 1/f2.
基金This work was supported by the National Natural Science Foundation of China(52073162,and 11774204)the Major Program of Natural Science Foundation of Shandong Province(ZR2019ZD43)X.T.H also acknowledged support from the ARC Centre of Excellence in Exciton Science(CE170100026).H.Y.thanks the Qilu Young Scholar Program of Shandong University.
文摘Organic photovoltaic(OPV)cells have found their potential applications in the harvest of indoor light photons.However,the output power of such indoor devices is usually far from the demand of the internet of things.Therefore,it is essential to boost the output power of indoor organic photovoltaics to a much higher level.As wildly deployed among industrial and civil luminous environments,thermal radiation-based indoor light sources are alternative candidates to supply the essential power of the off-grid electronics with a broad consecutive emission spectrum.In this work,we evaluated the photovoltaic performance of organic solar cells under indoor incandescent and halogen illuminations.Impressively,under such thermal radiations,an improvement over 500%of the output power density can be achieved in comparison with that under light-emitting diodes and fluorescent lamps,reaching a record high value of 279.1 lWcm^(-2) by the PM6:Y6-based device.The remarkable power output is originated from the extra near-infrared spectrum of indoor thermal lights,which restricts the effective area under 10 cm^(2) in achieving 1 mW output power.This work clarifies the feasibility of collecting photons radiated from indoor thermal light sources through OPV cells,and enlightens the further applications of indoor OPV cells under multiple illumination environments.
基金supported by the National Natural Science Foundation of China (21301016, 21473013)the National Basic Research Program of China (2014CB932103)+2 种基金Beijing Municipal Natural Science Foundation (2152016)the Fundamental Research Funds for the Central UniversitiesAnalytical and Measurements Fund of Beijing Normal University
文摘Photoactive cocrystal materials have received growing research interest in construction of photofunctional systems owing to the crucial roles in modifying the photo-related properties of molecular solids, based on the non-bonding interactions between self-assembly units. Herein, we report tunable luminescence and acid-base stimuli-responsive properties of a cocrystal assembled by 4-[2-(4-quinolinyl)vinyl]phenol (qv) and tetrafluoroterephthalic acid (a). The luminescent properties (such as wavelength, quantum yield and fluorescence lifetime) of qv.a changed obviously relative to the pristine qv, due to the proton transfer and the alternation of molecular arrangement within two-component crystalline material. The photoemission intensity of qv.a underwent from weak to strong upon HCl gas fuming, and the corresponding wavelength changed from 517 nm to 597 nm, which can be reversibly transferred after exposed in NH3. Such luminescent switching behavior may provide an effective way to develop new types of photoactive stimuli-responsive materials and optical sensors.
基金supported by the National Natural Science Foundation of China(No.51177148)
文摘High pressure sodium (HPS) lamp has been widely used in street lighting applications because of its maturity, reliability, high lighting efficiency, long life-time, and low cost. Light emitting diode (LED) is expected as the next generation lighting source due to its continuously improving luminous efficacy, better color characteristic, and super long life-time. The two lighting sources may coexist in street lighting applications for a long time. A novel HPS and LED compatible driver is proposed which is rather suitable and flexible for driving HPS and LED in street lighting applications. The proposed driver combines the LLC and LCC resonant circuits into a flexible resonant tank. The flexible resonant tank may change to LLC or isolated LCC circuit according to the lighting source. It inherits the traditional HPS and LED drivers' zero voltage switching (ZVS) characteristics and dimmable function. The design of the proposed flexible resonant tank considers the requirements of both HPS and LED. The experiments of driving HPS and LED on a prototype driver show that the driver can drive the two lighting sources flexibly with high efficiency.